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Preface

The increasing impact of climate change has led to more frequent and intense severe weather

events, posing significant challenges for disaster preparedness, climate resilience, and environmental

sustainability. Understanding and monitoring these atmospheric processes require advanced remote

sensing technologies which are capable of capturing high-resolution, multi-source data. This

Special Issue brings together 11 high-quality studies that explore state-of-the-art remote sensing

methodologies for severe weather detection, hydrometeorological analysis, and climate monitoring.

The research presented in this reprint covers a diverse array of topics, including the evaluation

of near-real-time satellite-based precipitation data, the use of Global Navigation Satellite System

(GNSS) for atmospheric water vapor measurement, and the role of mesospheric temperature and

water vapor in polar cloud formation. Several studies also focus on integrating multi-source remote

sensing datasets to enhance precipitation retrieval accuracy and improve extreme weather event

detection. These contributions demonstrate the potential of cutting-edge remote sensing techniques

in strengthening forecasting capabilities and supporting the advancement of climate research.

The motivation behind compiling this Special Issue is to bridge the gap between atmospheric

remote sensing innovation and its practical applications in meteorology, hydrology, and climate

science. By presenting a collection of studies that employ satellite observations, e.g., GNSS

atmospheric parameters, we aim to provide researchers, policymakers, and other stakeholders

with valuable insights into leveraging advanced technologies for environmental monitoring and

disaster mitigation.

We would like to extend our sincere appreciation to all contributing authors for their dedication

to high-quality research, as well as to the reviewers whose constructive feedback has been

instrumental in enhancing the scientific rigor of these studies. Special thanks go to the Editorial

Team for their support in bringing this Special Issue to publication. It is our hope that the findings

presented here will inspire further research and contribute to the ongoing development of satellite

remote sensing applications in weather and climate sciences.

Haobo Li, Suelynn Choy, Yuriy Kuleshov, Mayra Ivelisse Oyola-Merced, and Xiaoming Wang

Guest Editors
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Abstract: In this study, we investigate the performances of a commercial Global Navigation Satellite

System (GNSS) Radio Occultation (RO) mission and a new-generation RO constellation, i.e., Spire and

Constellation Observing System for Meteorology, Ionosphere, and Climate 2 (COSMIC-2), respectively.

In the statistical comparison between Spire and COSMIC-2, the results indicate that although the

average signal-to-noise ratio (SNR) of Spire is far weaker than that of COSMIC-2, the penetration

of Spire is comparable to, and occasionally even better than, that of COSMIC-2. In our analysis,

we find that the penetration depth is contingent upon various factors including SNR, GNSS, RO

modes, topography, and latitude. With the reanalysis of the European Centre for Medium-Range

Weather Forecasts and Radiosonde as the reference data, the identical error characteristics of Spire

and COSMIC-2 reveal that overall, the accuracy of Spire’s neutral-atmosphere data products was

found to be comparable to that of COSMIC-2.

Keywords: GNSS-RO; Spire; COSMIC-2

1. Introduction

For nearly two decades, Global Navigation Satellite System (GNSS) Radio Occultation
(RO) has served as a remote sensing technique providing vast amounts of data for numeri-
cal weather prediction [1,2], space weather analyses [3], and climate change research [4,5].
During GNSS-RO measurements, spaceborne receivers on low-Earth-orbiting (LEO) satel-
lites collect GNSS signals affected by refraction from the Earth’s atmosphere when GNSS
satellites disappear or emerge past the Earth’s horizon, yielding atmospheric profiles
with the advantages of high accuracy, high vertical resolution, all-weather capability, and
global coverage [6,7].

With the successful GPS/MET [8] experiment, the GNSS-RO technique has been
identified as a promising technique for the retrieval of atmospheric profiles. The GPS/MET
experiment, launched in April of 1995, played a pivotal role in demonstrating the feasibility
and effectiveness of GNSS-RO for atmospheric research. Thus, atmospheric monitoring
research of Earth involving GNSS-RO observations has been in demand, contributing to
a series of RO missions, including the Ørsted [9], Sunsat [10], Challenging Minisatellite
Payload [11], Satellite for Scientific Applications C/D [12], Gravity Recovery and Climate
Experiment [13], Constellation Observing System for Meteorology, Ionosphere, and Climate
1/2 (COSMIC-1/2) [14,15], Meteorological Operational satellite program-A/B/C [16], and

Remote Sens. 2023, 15, 5082. https://doi.org/10.3390/rs15215082 https://www.mdpi.com/journal/remotesensing1
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Feng Yun-3C/D [17] missions. Notably, COSMIC-2 is a joint mission launched by Chinese
Taiwan and the U.S. involving multiple satellites designed to collect RO data using signals
from GNSS. The mission aims to enhance global weather prediction, ionospheric research,
and climate monitoring. Although the number of RO profiles produced by operational
GNSS-RO missions is currently far below the minimum profile number required for global
observing systems, notably, a frequency of 16,000–20,000 globally distributed occultations
per day can achieve the requirement of assimilation in numerical weather prediction [18].
Recently, due to the advantages of small-satellite technologies, including their low economic
costs and short research and development periods, RO techniques have been rapidly
developed; thus, some commercial GNSS-RO missions have been performed with small
satellites to complement the shortage of scientific GNSS-RO data, such as Spire [19]. Spire
is a commercial space-based company that operates a constellation of nanosatellites for
various purposes, including RO measurements. In the Spire program, a constellation
of nanosatellites, known as the LEO Multi-Use Receiver Satellite Bus, has been built to
generate a tremendous amount of RO data.

Many evaluations of GNSS-RO data have been implemented to verify the high quality
of GNSS-RO retrievals, including GPS/MET [8], Challenging Minisatellite Payload [20],
Gravity Recovery and Climate Experiment [13], Meteorological Operational satellite
program [21], COSMIC-1 [14], etc. However, comprehensive investigations into the paral-
lels and distinctions between scientific occultation missions and commercial nanosatellite
occultation missions, such as COSMIC-2 and Spire, have been limited. Ho et al. (2020) [15]
preliminarily investigated the COSMIC-2 neutral atmospheric profile quality using ra-
diosonde data and other RO profiles in terms of profile precision, stability, accuracy, and
uncertainty. They found that COSMIC-2 data had a relatively consistent quality with
that of COSMIC-1, and the higher signal-to-noise ratio (SNR) of the COSMIC-2 mea-
surements allowed RO signals to penetrate deeper into the lower troposphere, slightly
improving the retrieval accuracy. Chen et al. (2021) [22] made a statistical comparison
of COSMIC-2 with data from radiosonde, RO data from other missions, global analyses
from ECMWF and the National Centers for Environmental Prediction final, and other
satellite products, and all the datasets had consistent vertical variations. The temper-
ature profiles showed a mean difference of <0.5 ◦C and a standard deviation (STD) of
1.5 ◦C, and the water vapor pressure showed deviations within 2 hPa in the lower tropo-
sphere. Spire has operated a constellation of more than 110 LEO nanosatellites since 2019,
and Spire’s RO refractivity profiles have comparable quality with that of COSMIC-2 [23].
Johnston et al. (2021) conducted a comparison between specific humidity profiles derived
from COSMIC-2 RO data and those from ERA5 and MERRA-2 reanalysis datasets. The find-
ings reveal a strong concordance between COSMIC-2 specific humidity and ERA5 while
highlighting more pronounced discrepancies with MERRA-2, especially within the bound-
ary layer [24]. Forsythe (2020) et al. validated the ionospheric electron density through
Spire’s CubeSats RO measurements, and the RO ionospheric inversion results showed
significant consistency with the digisonde measurements and Arecibo incoherent scatter
radar data [25].

Although the studies above already estimated the RO profiles of Spire and COSMIC-2
and obtained some preliminary results, the properties of the Spire and COSMIC-2 RO
retrievals, such as their global coverage and SNR influence, discrepancies between their
retrieval qualities, have not been studied. The GNSS-RO constellation observation distri-
bution exhibits global coverage [26], and the SNR is the critical factor limiting the deeper
penetration of the GNSS-RO observations [27]. Additionally, the limited payloads of the
small satellites result in low power consumption and low gain antennas, thereby reduc-
ing the RO retrieval quality. In this study, we aimed to systematically analyze Spire and
COSMIC-2 RO profiles from UCAR with other datasets, including ECMWF Reanalysis and
radiosonde datasets.

This paper is organized as follows. An introduction to the data and methodology is
given in Section 2. The systematic comparison of the Spire and COSMIC-2 retrievals with

2



Remote Sens. 2023, 15, 5082

the ECMWF reanalysis and radiosonde data is discussed in Section 3. Finally, conclusions
are provided in Section 4.

2. Data and Methodology

2.1. GNSS-RO Data

The Spire and COSMIC-2 RO data involved in this study, including the neutral atmo-
spheric excess phase and “wet” profile products, are available to freely download from the
COSMIC Data Analysis and Archive Center (CDAAC) (https://www.cosmic.ucar.edu/
accessed on 21 October 2023) [28]. The SNRs of RO events are recorded in the excess phase
files and meteorological parameters, such as the refractivity, pressure, temperature, relative
humidity, specific humidity, and water vapor pressure, are provided in the “wet” profile
files [15]. In the current study, Spire and COSMIC-2 RO data from the day of year (DOY)
60 in 2022 to 059 in 2023 are used. It is important to emphasize that the Spire data comprises
three navigation satellite systems: GPS, GLONASS, and GALILEO, whereas the COSMIC-2
data only includes GPS and GLONASS.

The equation representing refractivity (N), which is a function of pressure (P in hPa or
mbar), temperature (T in K), and water vapor pressure (e in hPa or mbar) in the neutral
atmosphere, is given as follows by Smith et al. (1953) [29].

N = 77.6
P
T
+ 3.73 × 105 e

T2
. (1)

Based on the assumption that water vapor could be negligible, RO “dry” profiles,
including “dry pressure” and “dry temperature”, are obtained by Equation (1). However,
this assumption is unreasonable because more moisture exists below the upper troposphere.
Hence, RO “wet” profiles (level-2 products, named “wetPrf” or “wetPf2”) including mois-
ture information are extracted using the one-dimensional variational (1DAR) method from
the RO bending angle profiles [30]. The vertical resolution of the “wet” profiles is 0.05 km
from the surface to below 20 km altitude and 0.1 km from above 20 km to 60 km altitude.

2.2. ERA5 Datasets

ERA5 is the fifth-generation global atmospheric reanalysis product [31], and hourly
ERA5 data representing pressure levels during 2019, used in this study, are among the
most advanced three-dimensional global analyses available for estimating the quality of
Spire and COSMIC-2 RO profiles as benchmark values. As shown in Table 1, the required
variables in the ERA5 dataset related to this study, including the specific humidity (kg/kg),
temperature (K), and geopotential (m2/s2), are available at a horizontal resolution of
0.25◦ × 0.25◦ on 37 pressure levels from 1000 hPa to 1 hPa. It can be downloaded publicly
from the provided URL https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-
era5-pressure-levels?tab=form (accessed on 21 October 2023).

Table 1. ERA5 hourly data on pressure levels used in this study.

Projection Regular Latitude-Longitude Grid

Horizontal coverage Global
Horizontal resolution 0.25◦ × 0.25◦

Vertical coverage 1000 hPa to 1 hPa
Vertical resolution 37 pressure levels

Temporal resolution Hourly
Required variables Specific humidity, temperature, and geopotential

2.3. Radiosonde Data

The Integrated Global Radiosonde Archive version 2 (IGRA2) provided by the National
Centers for Environment Information is a radiosonde dataset [32] containing variables
such as pressure, geopotential height, temperature, and relative humidity from high-
quality sounding performed at more than 2800 globally distributed stations; these data
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are accessible at the website https://www.ncei.noaa.gov/pub/data/igra/ (accessed on
21 October 2023). Here, IGRA2 data are used as the other benchmark values to eliminate the
effect of the assimilation of COSMIC-2 and Spire data in the ECMWF Integrated Forecasting
System since March and May of 2020, respectively [33]. The IGRA2 observation data are
very limited above the 30 km altitude due to the flight limits of radiosondes. Hence, the
limit height for comparison between the GNSS-RO and radiosonde data is set to 30 km in
this work.

2.4. Methodology

In the comparison of radiosonde and GNSS-RO data, data pairs are collocated within
the spatiotemporal windows of 1 h and 100 km. Furthermore, the vertical resolutions
of both the ERA5 and radiosonde data are not comparable to that of the GNSS-RO data.
Therefore, the ERA5 and radiosonde data are interpolated into the vertical resolutions of
the GNSS-RO data.

In this study, the mean difference and STD used in the statistical calculations are
defined using the following equations to evaluate the GNSS-RO product properties:

∆xa =
1

n∑
n
i=1

(

xro
i − xt

i

)

, (2)

STD∆xa =

√

1

n∑
n
i=1

((

xro
i − xt

i

)

− ∆xa
)2

, (3)

∆xr =
1
n ∑

n
i=1

(

xro
i − xt

i

)

xt
i

, (4)

STD∆xr =

√

√

√

√

1

n∑
n
i=1

(

(

xro
i − xt

i

)

xt
i

− ∆xr

)2

, (5)

where xro
i and xt

i represent the GNSS-RO and benchmark temperature, relative humid-
ity, pressure, and refractivity, respectively, the subscript i stands for the ith GNSS-RO-
benchmark collocation, and n is the number of collocations.

Emphasis should be placed on the fact that data quality control is conducted as part
of the data quality assessment process. The reference values were derived from ERA5 or
radiosonde data. RO refractivity profiles with relative errors surpassing 5%, as well as wet
pressure profiles exceeding 900% or dropping below −90%, were eliminated.

3. Comparison Results

3.1. Initial Analysis

The GNSS-RO constellation pattern impacts the distribution of RO event observations
over the globe. Without the specific configuration for Spire, consisting of a diverse set
of orbits compounding Sun-Synchronous Orbits (SSO), 83–85◦ Orbits, Equatorial Orbit,
51.6◦ Orbits, and 37◦ Orbits and the continuous changing of satellites owing to their short
operational lifetime of 2+ years [34]. As for COSMIC-2, six satellites orbit around the
Earth at an altitude of 550 km with a 24◦ inclination [35]. Furthermore, given that GNSS
constellations encompass diverse signal frequencies, constellation configurations, and
modulation-demodulation techniques, potentially influencing RO events. Hence, separate
investigations will be conducted for GPS, GLONASS, and GALILEO RO events.

The spatial distribution of the Spire RO events obtained from satellites with a different
orbit type has an obvious difference. As shown in Figure 1, the Spire RO events observed
on DOY 60 in 2022 are scattered globally. The red dots signify GPS RO events, the green
dots indicate GLONASS RO events, whereas the blue dots represent GALILEO RO events.
For COSMIC-2, Chen et al. (2021) [22] mention that RO events only cover the low-latitude
area (±45◦). Notably, few RO events recorded by COSMIC-2 occurred slightly beyond the
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edges of the ±45◦ region; these events are regarded as occurring on the scale within the
latitude area of ±45◦ in this study. The coverage areas of the RO events by Spire are wider
than those by COSMIC-2; thus, Spire can provide global RO data due to the constellation
characteristics of LEMUR-2 consisting of a series of orbits.

Figure 1. Spire RO event distribution on DOY 060 in 2022 (red: GPS, green: GLONASS, and

blue: GALILEO).

Furthermore, the RO events can be classified into two modes, setting occultation or
rising occultation, based on the relative movement trend on the occultation observation.
Considering the different navigation satellite systems, here, the RO events were divided
into six groups: GPS/Set, GPS/Rise, GLONASS/Set, GLONASS/Rise, GALILEO/Set, and
GALILEO/Rise.

Table 2 shows the percentage for six groups of profiles (wetPf2) from the Spire and
COSMIC-2 satellite data obtained from CDAAC from DOY 060 in 2022 to 059 in 2023 under
quality control. Generally, there were more setting occultation events than rising occultation
events (except GLONASS-derived RO events for Spire). The number of atmospheric profiles
for Spire amounts to 1,663,197, surpassing COSMIC-2 with the number of 1,440,424, which is
a great supplement to the high-latitude regions that COSMIC-2 data cannot cover. However,
the Spire satellite constellation comprises dozens of satellites, whereas COSMIC-2 consists
of only six. Daily data produced by individual Spire satellites from UCAR contain no
more than 300 RO soundings, which is much smaller than those recorded by individual
COSMIC-2 satellites, each providing over 700 RO soundings.

Table 2. The percentage for six groups of profiles (wetPf2) from the Spire and COSMIC-2 data

obtained from CDAAC from DOY 060 in 2022 to 059 in 2023 under quality control.

GNSS-RO
Mission

Number of
Profiles

Mode GPS GLONASS GALILEO

Spire 1,663,197
Set 26.46% 14.80% 12.14%

Rise 19.97% 15.29% 11.34%

COSMIC-2 1,440,424
Set 34.08% 18.71% None

Rise 29.43% 17.78% None

5
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With the RO events observed from DOY 060 in 2022 to 059 in 2023 by Spire and
COSMIC-2, we carried out an investigation on the RO events obtained with different
navigation satellite systems, i.e., GPS, GLONASS, and GALILEO. As shown in Table 2, the
percentages of the GPS-derived RO events are much larger than GLONASS- and GALILEO-
derived RO events for both Spire and COSMIC-2. This is reasonable considering the
number of operational GPS satellites is larger than GLONASS and GALILEO satellites. For
Spire, GLONASS-derived RO events are slightly higher than those derived from GALILEO.
Although there is no significant difference in the number of satellites in orbit for GLONASS
and GALILEO, it is important to note that some Spire satellites do not receive GALILEO
signals, including S128, S115, S117, and others.

3.2. SNR

The SNR is the key factor impacting deeper occultation, especially for surface and
tropical RO soundings. Currently, Spire and COSMIC-2 have developed new-generation
GNSS-RO payloads, i.e., STRATOS and the Tri-GNSS Radio-occultation System (TGRS),
respectively, to improve their retrieval quality in the low troposphere. It should be noted
that, compared to other payloads with high-gain antennas (e.g., the TGRS and CION [27]),
STRATOS is equipped with relatively low-gain antennas to track GNSS signals, thus directly
leading to relatively low SNR values in their measurements.

Figure 2 features a dual x-axis. The top x-axis represents the altitude in km, being
the straight-line height between the GNSS and LEO satellites, while the bottom x-axis
represents the time sequence in seconds. The y-axis corresponds to the SNR for two GPS
frequency bands. In this context, there are two GPS frequency bands, L1 at 1575.42 MHz
and L2 at 1227.60 MHz. In Figure 2, the SNR time series of two examples of a typical rising
occultation, observed in an adjacent area in the tropics nearly simultaneously by STRATOS
and the TRGS, are depicted. The 1-s average SNR of the two rising occultation events
shown with the black and green lines increases with increasing altitude. Furthermore,
obvious fluctuations or oscillations in the SNR curve can be observed at altitudes between
−100 km and −50 km, resulting from signals being temporarily captured and then abruptly
disappearing due to atmospheric ducting and super refraction [12]. It appears that the
SNR time series of the Spire is lower than that of the COSMIC-2. For example, at altitudes
above 0 km, the L1 SNR of the Spire is ~320 volts/volt, approximately one quarter of the
L1 SNR of the COSMIC-2, which is ~1400 volts/volt. Similarly, the L2 SNR of the Spire
is ~200 volts/volt, nearly half of the L2 SNR of the COSMIC-2, which is ~500 volts/volt.
Moreover, according to the study by Sokolovskiy et al. (2014) [36], the L1 and L2 SNRs
of the COSMIC-1 during several rising occultation events were ~600–800 volts/volt and
~200–600 volts/volt, respectively, at altitudes above 0 km. Therefore, the results that
STRATOS, which has relatively low-gain antennas, has a slightly weaker ability to capture
and track signals compared to IGOR, the payload of the COSMIC-1. Also, TRGS has an even
stronger ability to capture and track signals compared to both STRATOS and IGOR.

To generally compare the capability of STRATOS and the TRGS in capturing and
tracking signals, we also investigated the SNR in the altitude range of 60–80 km. The
60–80 km altitude range is optimal for evaluating signal strength, unaffected by atmo-
spheric interference. It’s sufficiently high to render attenuation from typical atmospheric
refraction negligible, yet it doesn’t extend to the E-layer where disturbances are more
pronounced [21,27]. As a result, the average L1-signal SNR within the 60–80 km altitude
range (hereafter referred to as the SNR average) is related to the signal strength of the RO
event. Figure 3 shows the average SNR histograms of the normalized probabilities for
the Spire, while Figure 4 displays the average SNR histograms of the normalized prob-
abilities for the COSMIC-2. For both GPS and GLONASS, the SNR averages of all the
Spire data (blue) range from ~200–1600 volts/volt with only one peak, which is much
weaker than the COSMIC-2 averages (brown), which vary from ~200–2250 with two peaks
(see Figures 3a and 4a). To investigate the influence of the navigation satellite systems
and occultation mode (setting or rising occultation) received by LEO on the SNR, all the
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data were divided into six groups: GPS/Set, GPS/Rise, GLONASS/Set, GLONASS/Rise,
GALILEO/Set, and GALILEO/Rise.

In Figure 3b,c and Figure 4b,c, the tops and bottoms of the x-axes represent the SNR av-
erages of the setting and rising occultation-normalized probability histograms, respectively.
Both the GPS/Set and GPS/Rise SNR averages of the Spire range from ~200–600 volts/volt,
while those of COSMIC-2 range from ~300–2000 volts/volt. In Figure 3c, the SNR aver-
ages for both the GLONASS/Set and GLONASS/Rise of the Spire range from ~300 to
1500 volts/volt, while those of COSMIC-2 range from ~250–2500 volts/volt in Figure 4c.
In Figure 3d, the SNR averages for both the GALILEO/Set and GALILEO/Rise of the
Spire range from ~300 to 1500 volts/volt. The SNR averages for both the GALILEO/Set
and GALILEO/Rise of the Spire span from ~300 to 750 volts/volt. It is possible that the
broader range of the SNR averages for GPS- or GALILEO-derived RO data is due to its
utilization of CDMA wireless data transmission, while GLONASS utilizes FDMA. It’s
worth noting that the occultation mode does not affect the scale of the SNR averages, while
the navigation satellite system (either GPS, GLONASS, or GALILEO) has an outstanding
effect on the range of the SNR averages. The SNR averages of the GPS-derived RO exhibit
a sharper peak compared to that of the GLONASS-derived RO, as shown in the comparison
between Figure 3b,c. The GPS- and GLONASS-derived RO data of the Spire produce two
distinct peaks that are widely separated from each other, as shown in Figure 3a. In contrast,
Figure 4a displays only one peak due to the proximity of the COSMIC-2 peaks, while the
SNR averages for GALILEO-derived RO data do not exhibit a clear peak in Figure 4c.

Figure 2. SNRs of two examples of a typical rising occultation in a tropical region with open-loop

tracking (blue: L1, orange: L2, black: 1-s average of L1, and green: 1-s average of L2). (a) STRATOS,

RO starting time 1847 UTC, 1 March 2022, located at 29.79◦N, 141.45◦W; (b) the TGRS, RO starting

time 1845 UTC, 1 March 2022, located at 30.52◦N, 142.44◦W. (The top x-axis represents the alti-

tude in km, being the straight-line height between the GNSS and LEO satellites, while the bottom

x-axis represents the time sequence in second. The y-axis corresponds to the SNR for two GPS

frequency bands).
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Figure 3. Histograms of the normalized probability of the average L1 SNR (volts/volt) values for the

Spire between 60 and 80 km.

Figure 4. Histograms of the normalized probability of the average L1 SNR (volts/volt) values for the

COSMIC-2 between 60 and 80 km.
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Ho et al. (2020) mentions that enhancing SNR can improve penetration and data
quality [15], and Jing et al. (2023) points out the correlation between the penetration of
COSMIC-2 and latitude [37]. Therefore, based on these insights, to analyze the correlations
between the SNR and penetration and between the SNR and data quality, it was necessary to
compare the mean SNRs at different latitudes. Thus, a statistical comparison was performed
on all the data and for the four data groups at latitudinal intervals of 15◦. As shown in
Figure 5, the influence of the RO mode on the mean SNR with latitudinal variations was not
significant. Figure 5a shows that the mean SNR values of the GPS- and GALILEO-derived
RO data of the Spire do not show a clear dependence on latitude, while the mean SNR
values of the GLONASS-derived RO data of the Spire show some fluctuation with latitude.
For COSMIC-2, Figure 5b shows that generally, the mean SNR values are much higher in
the low latitudes than in the high latitudes.

Figure 5. Mean SNR values of the Spire and COSMIC-2 at different latitudes: (a) Spire and

(b) COSMIC-2. Light green: all data, orange: GPS/Set, Red: GPS/Rise, blue: GLONASS/Set,

and purple: GLONASS/Rise, khaki: GALILEO/Set, and gray: GALILEO/Rise.

In summary, the mean SNR values of the Spire were significantly smaller than that of
the COSMIC-2. In addition, the mean SNR values of the GPS-derived RO showed a sharper
peak for both the Spire and COSMIC-2 than mean SNR values of the GLONASS-derived
RO, with no effect of the occultation mode observed. Notably, the SNR averages of the
GALILEO-derived RO data show no obvious peak. We then examined the penetrations of
different missions in relation to the varying SNR strengths in Section 3.3.

Table 3 presents the mean SNR values for the Spire, COSMIC-2, and COSMIC-1. The
mean SNR values of the Spire for the GPS-, GLONASS, and GALILEO-derived RO were 371,
708, and 480 volts/volts, respectively, and the total mean SNR for Spire was 503 volts/volts.
As for the COSMIC-2, the mean SNR values for the GPS- and GLONASS-derived RO
were 1315 and 1210 volts/volt, respectively, and the total mean SNR for COSMIC-2
was 1276 volts/volt. The mean SNR value for the COSMIC-1, obtained from [38], was
704 volts/volt. These results indicate that the ability of the Spire to track only GPS signals
is significantly weaker than that of the COSMIC-1, and with the joint consideration of
GLONASS and GALILEO, Spire can achieve a slightly weaker capability than COSMIC-1.
The COSMIC-2 has a superior ability to track signals compared to both the COSMIC-1
and Spire.
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Table 3. Mean L1 SNR values of Spire, COSMIC-2 and COSMIC-1 (unit: volts/volt).

GNSS-RO
Mission

GPS GLONASS GALILEO Total

Spire 371 708 480 503
COSMIC-2 1315 1210 None 1276
COSMIC-1 704 None None 704 [38]

3.3. Penetration

The lower atmosphere is important for numerical weather prediction and atmospheric
science research. Because of thick water vapor near the surface, RO observations are limited
in their ability to provide atmospheric information in the lower troposphere. As a result,
the penetration GNSS-RO detected is also an important indicator of the quality of RO
sound. In this section, statistical analysis was conducted on the penetration of COSMIC-2
and Spire, and the effect of SNR on the penetration was analyzed.

As shown in Table 4, 76.60% of the Spire data can achieve penetration depths below
1 km in the lower troposphere. The COSMIC-2 was able to detect the surface atmosphere at
a 1 km height in about 78.12% of RO events, which is better than the Spire. According to Ho
et al. (2020), increasing the SNR can improve the RO penetration depth, which improves the
ability of COSMIC-2 in penetrating deep into the lowest 100 m of the troposphere. Therefore,
the conclusion that the COSMIC-2 can penetrate deeper than the Spire is consistent with
previous experiments [15] that attribute this difference to the higher SNR of the COSMIC-2.
Moreover, in comparison to the capability to detect the surface atmosphere at a 1 km height,
it is noteworthy that setting occultation events can achieve greater penetration depths than
rising occultation events for both Spire and COSMIC-2, independent of the navigation
satellite system’s influence.

Table 4. Penetration depth percentages of Spire and COSMIC-2 from DOY 060 in 2022 to 059 in 2023.

(altitude of penetration Hp).

GNSS-RO
Mission

Group Hp ≤ 1 km 1 km < Hp ≤ 5 km 5 km < Hp ≤ 10 km Hp > 10 km

Spire

GPS/Set 78.62% 19.75% 1.55% 0.08%
GPS/Rise 77.38% 21.08% 1.46% 0.09%

GLONASS/Set 78.29% 20.16% 1.49% 0.06%
GLONASS/Rise 74.31% 23.93% 1.64% 0.12%
GALILEO/Set 79.05% 19.29% 1.56% 0.10%

GALILEO/Rise 73.29% 24.57% 2.02% 0.12%
Total 76.60% 22.20% 1.07% 0.13%

COSMIC-2

GPS/Set 79.20% 19.87% 0.90% 0.03%
GPS/Rise 75.34% 23.61% 1.01% 0.04%

GLONASS/Set 78.21% 20.57% 1.02% 0.21%
GLONASS/Rise 75.09% 23.62% 1.21% 0.08%

Total 78.12% 20.79% 1.01% 0.08%

However, it is important to note that the statistical method used above is not perfect
due to the influence of topography (e.g., mountains) on the penetration depth. Taking
terrain into account (using data from ETOPO2 v2), we plotted the Spire RO events in a global
topographic map where areas at Ht ≤ 1 km, 1 km < Ht ≤ 5 km, and Ht > 5 km (terrain
high Ht) are denoted with white, brown, and deep brown colors, as shown in Figure 6.
Figure 6 shows that RO events at Hp ≤ 1 km (altitude of penetration Hp) are scattered in the
region at Ht ≤ 1 km (Figure 6a), those at 1 km < Hp ≤ 5 km (Figure 6b) are found mainly
in the region at 1 km < Ht ≤ 5 km (e.g., the South Pole and mountainous areas), those at
5 km < Hp ≤ 10 km (Figure 6c) are concentrated mainly in the region at Ht > 5 km (e.g., the
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Himalayan Mountains and Andes Mountains), and those at Hp > 10 km (Figure 6d) are
few and dotted around the world.

 

Figure 6. Penetration map of global-topography RO events recorded by Spire from DOY 060

in 2022 to 091 in 2022: (a) Hp ≤ 1 km (altitude of penetration Hp), (b) 1 km < Hp ≤ 5 km,

(c) 5 km < Hp ≤ 10 km, and (d) Hp > 10 km; white: Ht ≤ 1 km, brown: 1 km < Ht ≤ 5 km, and

deep brown: Ht > 5 km (terrain high Ht).

Although the RO events recorded by the COSMIC-2 are limited to the lower-latitude
area (±45◦) (as mentioned in Section 3.1), similar phenomena between the COSMIC-2 and
Spire records are shown in Figure 7. Due to the great number of RO events recorded by
COSMIC-2, the influences of topography are clearly visible, particularly for RO events at
5 km < Hp ≤ 10 km, which are concentrated in the Himalayan Mountains and Andes
Mountains, as indicated by the red points in Figure 7c.

Table 4 summarizes the percentages of RO data recorded below 1 km for the Spire
and COSMIC-2, using the division scheme described in Section 3.1. The table shows
that, in general, the percentages of the setting occultation events (except for GPS-derived
RO events for the Spire, highlighted in gray) are slightly higher than those of the rising
occultation events. Additionally, the ability to penetrate the lower troposphere during
rising occultation events is slightly weaker than during setting occultation events. When
compared to the COSMIC-2 data, the percentages of the corresponding items in the Spire
data are higher, indicating that the Spire has a superior ability to penetrate the lower
troposphere globally compared to the COSMIC-2 in lower-latitude regions. By considering
the information in Table 4, the penetration depth also depends on the navigation satellite
system and occultation mode.
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Figure 7. Penetration map of global-topography RO events recorded by COSMIC-2 from DOY

060 in 2022 to 091 in 2022: (a) Hp ≤ 1 km (altitude of penetration Hp), (b) 1 km < Hp ≤ 5 km,

(c) 5 km < Hp ≤ 10 km, and (d) Hp > 10 km; white: Ht ≤ 1 km brown: 1 km < Ht ≤ 5 km, and

deep brown: Ht > 5 km (terrain high Ht).

To quantify the ability of the studied systems to detect the lower troposphere, the
influences of topography were minimized by subtracting the terrain height from the
penetration depth. Figure 8a shows the cumulative percentages of data below 1 km for
the Spire and COSMIC-2 at different latitudes, indicating that the global Spire data are
susceptible to topographic effects, particularly at the South Pole. With topographic effects
accounted for, the COSMIC-2 surpasses the Spire within the latitude range of ±45◦. In
general, the ability of the Spire global data, with topographic effects fixed, to penetrate the
lower troposphere becomes stronger with increasing latitude. Combining Figures 5–7, the
penetration depth is also determined by topography and latitude. Figure 8b exhibits the
cumulative percentages of RO events at various penetration depths. The Spire RO events
recorded with fixed topographic data show better performance in detecting the near-surface
atmosphere, and similar results are seen for the COSMIC-2 data, which perform slightly
worse than the fixed Spire data (see Figure 8).

After fixation, the Spire and COSMIC-2 data below an altitude of 1 km make up
88.7% and 85.3% of all the data, respectively. Due to topographic changes and water vapor
variations with increasing latitude, the penetration depth is affected, thus leading to the
retrieval statistics. Through comparing the fixed Spire data within the lower-latitude range
of ±45◦ to the fixed COSMIC-2 data, it is found that the fixed Spire (±45◦) data below the
1 km altitude accounted for 84.2% of all the data. In ascending sequence, the ability of
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the systems to perform deeper soundings could be ranked as follows: Spire fixed (±45◦),
COSMIC-2 fixed, and Spire fixed.

Figure 8. Cumulative percentages (a) of data below 1 km for Spire and COSMIC-2 at different

latitudes (light green: Spire, orange: COSMIC-2, red: Spire with the topographic data fixed, and blue:

COSMIC-2 fixed) and (b) cumulative percentages at each penetration for Spire and COSMIC-2 (blue

solid line: Spire, orange dashed line: Spire fixed, green with dashed-dotted line: Spire fixed within

the latitude area of ±45◦, red solid line: COSMIC-2, and purple: COSMIC-2 fixed).

Therefore, COSMIC-2 has a better performance in sounding the deeper troposphere
than Spire. Owing to topographic effects, especially the effects of mountains, the penetration
depth is obviously affected. After removing the effects of terrain, the penetration of Spire is
improved significantly, but under the same circumstances (e.g., at latitudes within ±45◦),
COSMIC-2 still has a better performance than Spire w.r.t deep penetration.

3.4. RO Retrieval Quality Assessment

The GNSS-RO product “wetPf2” includes atmospheric refractivity, temperature, spe-
cific humidity, and pressure. The other parameters are retrieved from the refractivity
using the 1DAR method, so we preliminarily analyzed the refractivity characteristics. The
COSMIC-2 RO data evaluated herein [15] have sufficient accuracy to assess the Spire data
using stringent collocation criteria of a 1 h temporal window and a spatial distance of
100 km. Over 10 km, the differences were uniformly distributed on both sides of the y-axis
at the zero point, as shown in Figure 9. Below 10 km, the differences between Spire and
COSMIC-2 are largest, with more positive differences compared to the other heights, al-
though these findings may have resulted from the increased water vapor or few considered
collocation pairs.

Figure 10a shows that the root mean square (RMS) for the absolute difference of the
refractivity below 30 km decreased with increasing latitude in comparison with the ERA5
dataset. In addition, the refractivity profiles of COSMIC-2 are chiefly in the tropics and
diminish sharply as the latitude increases, while those of Spire are primarily situated in
middle latitudes and few near the poles. Owing to the lower moisture at high latitudes,
the Spire data was limited to the latitude range of ±45◦ to facilitate a comparison with the
COSMIC-2 data.
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Figure 9. The fractional refractivity comparison between the Spire and COSMIC-2 wetPf2 data below

30 km (Red: mean fractional difference, and blue: STD).

Figure 10. RMS of refractivity below 30 km and profile counts at different latitudes (red: Spire, blue:

COSMIC-2). (a) RMS of refractivity below 30 km and (b) counts (Kilo-).

The evaluated GNSS RO data covers the entire year, enabling the analysis of the neutral
atmospheric refractivity error seasonal characteristics below 30 km as shown in Figure 11.
The solid lines represent the mean fractional differences in refractivity, while the dotted
lines indicate the STD of fractional differences in refractivity. The black, red, green, and
blue lines correspond to spring, summer, autumn, and winter, respectively. Figure 11a–c
represent refractivity error seasonal characteristics for Spire and COSMIC-2 for Spire, Spire
(±45◦), and COSMIC-2, respectively. Based on the mean and STD of fractional differences
in refractivity observed across different seasons, there does not appear to be any significant
seasonal variation in refractivity errors. This may be due to the fact that GNSS uses L-Band
navigation signals, which have the ability to penetrate clouds and rain, resulting in minimal
weather-related interference.
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Figure 11. The neutral atmospheric refractivity error seasonal characteristics for Spire and COSMIC-2

from DOY 060 in 2022 to 059 in 2023 below 30 km. (black: Spring, red: Summer, green: Fall, and

blue: Winter).

Due to the coarse coordinate scale in Figure 11 displayed, in Figure 12, the mean
and STD of fractional differences in refractivity are presented separately to analyze the
refractivity error characteristics. Also, it conducts an analysis of how different satellite
navigation systems and RO event modes affect these refractivity error characteristics.

The neutral-atmosphere refractivity data acquired from Spire and COSMIC-2 were
compared with the ERA5 dataset under the division scheme described in Section 3.1. The
results obtained for all the data and for the six data groups are plotted in Figure 12. The
statistics of those four groups (GPS/Set, GPS/Rise, GLONASS/Set, and GLONASS/Rise)
have identical results, while GALILEO/Set and GALILEO/Rise show better statistics
than the others, especially below 10 km shown in Figure 12d,e. Thus, the RO event
modes did not impact the retrieval quality. The better statistics for GALILEO may be
related to the fact that the precision of GALILEO code and phase observations outperforms
those of the GPS and GLONASS ones [39,40]. Figure 12a–c show the statistical results
obtained for Spire, revealing that below 10 km, the mean fractional differences for GPS/Set,
GPS/Rise, GLONASS/Set, and GLONASS/Rise were negative within the magnitude of
~0.8% and maximal STD of ~2.0%, while the mean fractional differences for GALILEO/Set
and GALILEO/Rise were negative within the magnitude of ~0.6% and maximal STD of
~1.8%; at heights between 10 and 25 km, the mean fractional differences were negative
within the magnitude of ~0.20% and maximal STD of ~0.4%; and above 25 km, the mean
fractional differences were positive within the magnitude of ~0.25% and maximal STD of
~0.75%. Within the latitude range of ±45◦, a smaller proportion of Spire GNSS RO data
were analyzed compared to the global data as shown in Figure 12d,e. Below 10 km, the
mean fractional differences for GPS/Set, GPS/Rise, GLONASS/Set, and GLONASS/Rise
were negative within the maximum value of ~1.2% and maximal STD of ~2.2%, while the
mean fractional differences for GALILEO/Set and GALILEO/Rise were negative within
the maximum value of ~0.5% and maximal STD of ~1.8%; at heights between 10 and 25 km,
the mean fractional differences were within the magnitude of 0.2%, with a maximal STD of
~0.5%; and above 25 km, the mean fractional differences were positive within the maximum
value of ~0.3% and maximal STD of ~0.8%. For the COSMIC-2 data shown in Figure 12g–i,
below 10 km, the mean fractional differences were negative within the maximum value of
~1.8% and maximal STD of ~2.0%; at heights between 10 and 25 km, the mean fractional
differences were within the magnitude of ~0.2% and maximal STD of ~0.7%; and above
25 km, the mean fractional differences were positive within the maximum value of ~0.2%
and maximal STD of ~1.0%.

It is evident that the Spire data collected within latitudes of ±45◦ has comparable
quality to the COSMIC-2 data. Beyond the ±45◦ latitude range, the retrieval quality of the
Spire data was higher than that of the COSMIC-2 data, perhaps because less moisture is
present at higher latitudes.
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Figure 12. Neutral atmospheric refractivity comparison of the Spire and COSMIC-2 wetPf2 products

with ERA5 data from DOY 351 in 2020 to 015 in 2021 below 30 km (black: all data, red: GPS/Set,

green: GPS/Rise, blue: GLONASS/Set, yellow: GLONASS/Rise, purple: GALILEO/Set, and

gray: GALILEO/Rise). (a–c) Mean fractional differences, STDs, and counts in the Spire record,

(d–f) mean fractional differences, STDs, and counts in the Spire record (±45◦), and (g–i) mean

fractional differences, STDs, and counts in the COSMIC-2 record.

Furthermore, we performed a statistical comparison of the specific humidity, absolute
temperature, and pressure obtained from RO events through the 1DAR method with those
of the ERA5 dataset under the same circumstances. Figure 13 shows the mean differences
and STDs in the meteorological parameters retrieved from the Spire (±45◦) and COSMIC-
2 data. The mean differences and STDs of both the Spire and COSMIC-2 data exhibit
identical statistical results, especially above the 10 km altitude. Below 10 km, the mean
differences in specific humidity for both the Spire and COSMIC-2 data were negative,
with maximal values of ~0.45 g/kg and ~0.70 g/kg and maximal STDs of ~0.9 g/kg and
~0.8 g/kg, respectively; the mean differences in temperature in the Spire and COSMIC-2
data were positive within ~0.25 K and ~0.4 K with maximal STDs of ~0.7 K and ~0.7 K,

16



Remote Sens. 2023, 15, 5082

respectively, and the mean differences in pressure in the Spire and COSMIC-2 data were
negative within ~0.2 hPa and ~0.1 hPa, with maximal STDs of ~1.1 hPa and ~1.3 hPa,
respectively. Above 10 km, according to the statistics obtained for the Spire and COSMIC-2
data, the specific humidity exhibited mean differences and STDs of nearly equal zero;
the temperature exhibited mean differences and STDs that fluctuated near zero within
a maximum value of ~0.3 K and a maximal STD of ~1.8 K, and the pressure exhibited mean
differences and positive STDs within the maximum value of ~0.1 hPa and maximal STD
of ~0.5 hPa, indicating very similar results between the two data sources. Compared to
the ERA5 product, the specific humidity, temperature, and pressure of Spire (±45◦) and
COSMIC-2 indicated identical retrieval qualities.

Figure 13. Meteorological parameter comparison of the Spire (±45◦) and COSMIC-2 wetPf2 prod-

ucts compared with ERA5 data from DOY 351 in 2020 to 015 in 2021 below 30 km ((a,b) specific

humidity for Spire and COSMIC-2, respectively; (c,d) absolute temperature for Spire and COSMIC-2,

respectively; (e,f) pressure for Spire and COSMIC-2, respectively).
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To remove the coupling effect that arises when assimilating data into the ERA5 dataset,
Spire (±45◦) and COSMIC-2 data were compared with radiosonde data. Above an altitude
of approximately 25 km, insufficient radiosonde data were used to perform the statistical
comparison; thus, at this height, the results were not credible. The mean differences
in the refractivity, specific humidity, temperature, and pressure of the Spire data were
negative within ~1.8%, ~0.80 g/kg, ~0.45 K, and ~1.0 hPa below 10 km, respectively,
with maximal STDs of ~3.0%, ~1.8 g/kg, ~1.7 K, and ~2.2 hPa, respectively, as shown
in Figure 14. Above the altitude of 10 km, the mean differences in refractivity, specific
humidity, temperature, and pressure in the Spire data fluctuated near zero within 0.2%,
0.1 g/kg, ~0.2 K, and ~0.3 hPa, respectively, with maximal STDs of ~1.0%, ~0.1 g/kg,
~1.3 K, and ~0.7 hPa, respectively.

Figure 14. Mean differences and STDs of the Spire (±45◦) wetPf2 product compared to radiosonde

data from DOY 060 in 2022 to 059 in 2023 below 30 km: (a) refractivity, (b) specific humidity,

(c) absolute temperature, and (d) pressure.

Figure 15 shows that the mean differences in refractivity, specific humidity, tempera-
ture, and pressure in the COSMIC-2 data were negative within ~2.2%, ~1.2 g/kg, ~0.2 K,
and ~0.2 hPa below 10 km, with maximal STDs of ~2.8%, ~1.5 g/kg, ~1.7 K, and ~1.2 hPa,
respectively. Above 10 km, the mean differences in refractivity, specific humidity, and
pressure in the COSMIC-2 data fluctuated near zero within values of 0.1%, 0.1 g/kg, and
~0.1 hPa, with maximal STDs of ~0.3%, ~0.2 g/kg, and ~0.8 hPa below 10 km, respectively.
The difference in temperature was negative above 10 km within ~0.3 K and with a maximal
STD of ~1.3 K. Apparently, compared to the radiosonde data, the retrieval quality of the
Spire and COSMIC-2 data exhibited similar statistics, and in the refractivity comparison,
the COSMIC-2 data had slightly smaller differences than the Spire data.
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Figure 15. Mean differences and STDs of the COSMIC-2 wetPf2 product compared with radiosonde

data from DOY 060 in 2022 to 059 in 2023 below 30 km: (a) refractivity, (b) specific humidity,

(c) absolute temperature, and (d) pressure.

4. Discussion

The quality of Spire and COSMIC-2 RO data is assessed Radio Occultation (RO) data
is assessed comprehensively.

Nowadays, Spire can receive three navigation systems: GPS, GLONASS, and GALILEO,
while the COSMIC-2 is limited to GPS and GLONASS. The initial analysis of GNSS-RO
data from Spire and COSMIC-2 shows that Spire can offer a broader global coverage of RO
events because of consisting of a diverse set of orbits. GPS-derived RO events were more
than GLONASS and GALILEO, due to the greater number of operational GPS satellites.
Although there is no significant difference in the number of satellites in orbit for GLONASS
and GALILEO, GLONASS-derived RO events for Spire slightly outnumber those derived
from GALILEO due to some Spire satellites, such as S128, S115, S117, and others, not
receiving GALILEO signals.

The results of SNR indicate that the ability of the Spire to track only GPS signals
is significantly weaker than that of the COSMIC-1, and with the joint consideration of
GLONASS and GALILEO, Spire can achieve a slightly weaker capability than COSMIC-1.
The COSMIC-2 has a superior ability to track signals compared to both the COSMIC-1
and Spire.

COSMIC-2 outperforms Spire in achieving better penetration, primarily attributed to
COSMIC-2’s higher SNR. Moreover, setting occultation events consistently showed greater
penetration depths than rising occultation events for both Spire and COSMIC-2, regardless
of the satellite navigation system used. After fixation on the influence of topography, such
as mountains, on penetration depth, the Spire and COSMIC-2 data below an altitude of
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1 km make up 88.7% and 85.3% of all the data, respectively. Due to topographic changes
and water vapor variations with increasing latitude, the penetration depth is affected, thus
leading to the retrieval statistics. Through comparing the fixed Spire data within the lower-
latitude range of ±45◦ to the fixed COSMIC-2 data, it is found that the fixed Spire (±45◦)
data below the 1 km altitude accounted for 84.2% of all the data. In ascending sequence, the
ability of the systems to perform deeper soundings could be ranked as follows: Spire fixed
(±45◦), COSMIC-2 fixed, and Spire fixed. Therefore, COSMIC-2 has a better performance
in sounding the deeper troposphere than Spire.

With the ERA5 and Radiosonde as the reference data, it is evident that the Spire
data collected within latitudes of ±45◦ has comparable quality to the COSMIC-2 data.
Beyond the ±45◦ latitude range, the retrieval quality of the Spire data was higher than
that of the COSMIC-2 data, perhaps because less moisture is present at higher latitudes.
Additionally, the analysis of mean and STD of fractional differences in refractivity across
different seasons does not reveal significant seasonal variations in refractivity errors. In
addition, Spire can produce a great number of atmospheric profiles with quality comparable
to that of COSMIC-2 to complement the limitation of COSMIC-2 and cover the low-latitude
area (±45◦).

5. Conclusions

In this study, we mutually analyzed the coverage, SNR, and penetration characteristics
of Spire and COSMIC-2 data and assessed the corresponding RO neutral-atmospheric
products through comparisons with ERA5 and radiosonde datasets considering the division
of GNSS and RO modes. Based on the above assessment and analysis, the conclusions are
as follows:

• Spire’s RO events demonstrated global coverage due to various orbiting geometries,
while COSMIC-2 events were concentrated in the tropics and reduced at higher latitudes.

• GPS-derived RO events were generally more abundant than GLONASS-derived events
in both Spire and COSMIC-2 datasets. And GLONASS-derived RO events slightly
outnumbered those derived from GALILEO for Spire.

• STRATOS payload on Spire, equipped with lower-gain antennas, exhibited weaker
signal capturing compared to IGOR (COSMIC-1) and significantly weaker than TRGS
(COSMIC-2).

• The SNR averages of the GLONASS-derived RO events in the Spire data are much
stronger than those of the GPS-derived events, while for COSMIC-2, the strengths of
the SNR averages had the same magnitudes, with little difference observed between
the GPS- and GLONASS-derived RO events.

• In the same coverage area (±45◦), COSMIC-2 demonstrated better penetration ability
than Spire.

• Based on the research by Gorbunov et al. (2022) [27], it has been revealed that the
SNR serves as an indicator of signal strength and holds a crucial role in penetration.
Penetration depth was found to be influenced by SNR, GNSS, RO modes, topography,
and latitude, as revealed by combined results obtained in Sections 3.2 and 3.3.

• Compared to the ERA5 and radiosonde products, the Spire and COSMIC-2 datasets
have identical retrieval qualities when considering the RO data of Spire and COSMIC-
2. The accuracy of the neutral-atmosphere Spire data products acquired herein was
comparable with those of COSMIC-2.

Corroborated the COSMIC-2 retrieval quality assessments made by Ho et al. (2020),
our study contributes to the understanding of the capabilities and performance of Spire and
COSMIC-2 RO retrievals. These findings emphasize the valuable role of nanosatellite GNSS-
RO techniques like Spire in advancing atmospheric monitoring. Incorporating commercial
initiatives such as Spire supplements scientific GNSS-RO data and addresses the need for
global observing systems.
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Abstract: Irrigated agriculture is indispensable to the Lower Mekong River Basin (LMB), which

ensures food security and provides livelihoods for tens of millions of people. Irrigation, agricultural

production, hydropower and aquatic ecosystem health are intertwined in LMB, so it is necessary

to adopt a holistic approach to analyze irrigation problems. Here, we discuss the challenges and

opportunities of LMB irrigation. Bibliometric analysis is carried out to determine the characteris-

tics and patterns of watershed irrigation literature, such as the importance of authors, affiliated

institutions, and their distribution in China. Based on bibliometric analysis, research topics are

determined for thematic review. Firstly, we investigated the factors that directly affect the demand

and supply of irrigation water and associated crop yield impacts. Secondly, we analyzed the influence

of water availability, land use and climate change on agricultural irrigation. Thirdly, we analyzed the

adverse effects of improper irrigation management on the environment, such as flow pattern change,

ecosystem deterioration and land subsidence caused by groundwater overexploitation. Fourthly,

the time–space mismatch between water supply and demand has brought serious challenges to the

comprehensive water resources management in cross-border river basins. In each specific application

area, we sorted out the technologies in which remote sensing technology is used. We hope that this

review will contribute to in-depth research and decision analysis of remote sensing technology in

agricultural irrigation.

Keywords: bibliometric analysis; irrigation; agriculture; Lower Mekong River Basin; water resource

management; remote sensing

1. Introduction

Stretching over 4900 km from the Tibetan Plateau to the South China Sea, the Mekong
River drains an area of 795,000 km2 and has an average annual discharge of 475 km3.
The Lower Mekong River Basin (LMB, Figure 1) includes parts of Cambodia, Lao PDR,
Thailand and Vietnam, and it is home to more than 70 million people [1]. The distribution
of precipitation in the LMB has a strong seasonality, which plays a decisive role in the
selection of local crops and planting dates in different areas within the region [2]. In LMB
countries, the wet season runs approximately from May to October, followed by a dry
season from November to March. The Mekong River flow usually is at its lowest in April.

Remote Sens. 2023, 15, 3856. https://doi.org/10.3390/rs15153856 https://www.mdpi.com/journal/remotesensing23
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Figure 1. Mekong River topographic map.

Rural livelihoods in the LMB are highly dependent on agriculture [2]. This is partic-
ularly true for Cambodia, Myanmar and Laos PDR where agriculture related activities
account for a significant share of GDP as shown in Table 1. Gross domestic product (GDP)
is a monetary measure of the market value of all the final goods and services produced in a
specific time period by a country. Irrigation plays an important role in securing monsoon
crops and converting a single crop, namely rain-fed rice, to multiple cropping systems.
Irrigation in the LMB relies on water diverted from the Mekong main stem and its tribu-
taries. Irrigation is mostly carried out in the dry season when crop area is lower than that
during the rainy season. Notably, the Mekong Delta is the most productive area in the
LMB and a main irrigation water consumer. Crops in the LMB are heavily dependent on
rainwater to grow, with rice being the dominant crop. The LMB produced 48.2 million tons,
or around 51% of the 93.6 million tons of rice produced in the four LMB countries (Lao
PDR, Cambodia, Thailand, and Vietnam) as a whole in 2013 [3].
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Table 1. Key statistics in the LMB countries, 2021.

Cambodia Lao PDR Thailand Vietnam Myanmar

GDP (106 USD) 26,961 18,827 505,947 366,137 65,091

Agriculture,
forestry, and
fishing, value

added (% of GDP)

22.8 16.1 8.5 12.6 23.4

Population (103) 16,589 7425 71,601 97,468 53,798

GDP Growth (%) 3.0 2.5 1.5 2.6 −17.9

GDP per capita
(USD)

1625 2535 7066 3756 1209

Urban population
growth rate (%)

2.9 3.2 1.6 2.7 1.7

Poverty (%) 16.7 27.6 9.8 2.8 25.6

Source: https://data.worldbank.org/ (accessd on 15 March 2023).

In general, irrigation is seen as a crucial component of rural development and plays
a significant role in boosting agricultural production and alleviating poverty in the LMB
countries [4]. So far, irrigation systems are created expressly to produce rice, making it
challenging for farmers to switch to other crops [4]. Nevertheless, the intensification of
irrigated agriculture had led to farmers in Thailand and Vietnam to shift from rice to high-
return activities such as aquaculture or cash crops. Nowadays, however, a considerable
number of populations in the LMB still live in poverty, as shown in Table 1.

Water abstraction for agriculture makes up around 90% of all water diversions in the
region (Cambodia: 94%, Thailand: 91%, Vietnam: 86% and Laos: 82%) [4]. However, the
distribution of water resources in the Mekong River region is rather uneven, and there
exist competing interests in water uses between the upper and lower reaches. Water is
essential for sustainable agricultural production [5,6]. In agricultural water use, irrigation
has the largest share, and irrigation efficiency and grain yield directly affect a country’s
agricultural development level [7,8].

Meanwhile, water, food and energy (WEF) are highly interconnected in the LMB. For
example, water is used to produce food and energy (e.g., irrigation and hydropower) [9],
and in return, energy is required to pump and distribute water and produce food [10,11].
In fact, irrigation uses large amounts of water, which poses a challenge to water resources
management in the LMB, especially in the dry season. In this situation, it is useful to take
a holistic perspective by considering water, food and energy simultaneously, or in other
words, taking a WEF nexus perspective while analyzing irrigation in the LMB. Such a
perspective can potentially enhance water, energy and food security by increasing efficiency,
reducing trade-offs, building synergies and improving governance across the three inter-
connected sectors [12]. Needless to say, WEF represents the most significant resources that
support sustainable development of human society [13].

Most existing studies [14–17] related to irrigation in LMB focus on hydropower be-
cause of the close relationship between these two sectors. There are both synergies and
tradeoffs between these two sectors. For instance, water stored in upstream hydropower
reservoirs can augment irrigation water supply in the downstream during the dry season
and in dry years, effectively relieving downstream drought. More enhanced cooperation
between the riparian countries are expected to be an effective way in addressing water and
food challenges in the LMB [18]. On this important and complex issue about irrigation
in the LMB, despite a considerable number of existing studies conducted from various
angles, there is generally a lack of systematic review of the development, status and future
challenges of irrigation in the region, especially when it is related to the interactions and
interdependencies between irrigation and other water-using sectors such as hydropower
and ecosystem. To the best of our knowledge, an irrigation-focused review is yet to be done

25



Remote Sens. 2023, 15, 3856

for the LMB. Based on a detailed investigation of available publications focusing on this
topic through bibliometric analysis and specific theme-focused review, this paper aims to
improve our understanding of key challenges and opportunities in irrigation management
and development in the LMB.

2. Methodology

2.1. Data Collection

The bibliometric analysis and review in this paper rely on literature on LMB irrigation
found from the Web of Science database [19]. We chose the Web of Science because it is
the most well-established bibliometric dataset, and the inclusion criteria for journal titles
are transparent and being regularly updated. The Web of Science database has synthetical
and integrated paper records [20]; the high number of journals and articles in its collection
permitted us to generate representative results.

Firstly, bibliometric records can be constructed using a keyword such as “irrigation
Mekong” in the title, the abstract or the keyword of publications searching in Web of
Science [21]. Secondly, we used key words such as land use, crop productivity and land
cover in the search query associated with “irrigation Mekong”. Thirdly, we used “Food,
Water and Energy Nexus” and its variants (Water, Food and Energy Nexus; Energy, Food
and Water Nexus, etc.) [22] to search for related publications in the Web of Science. In
addition, we also use some search wildcards and similar keywords to increase the scope
of the search. Overall, the summary of searching keywords includes “Irrigation, Mekong,
land use, crop productivity, land cover, Food water and Energy Nexus”. Lastly, after going
through the search, we exported the text documents of those identified publications from
the Web of Science and put them into the Citespace for bibliometric analysis.

2.2. Data Preprocessing

A screening of the collected articles from the Web of Science suggested that some
publications not related to the topic were included, and they were subsequently removed
from the collection after double-checking those publications from the original websites
where they were published online, if applicable. We then extracted the information of each
author’s country of origin, affiliations, year of publication, publisher and citation numbers.
For the purpose of thematic analysis, we extracted the main research content from the title
and abstract of each paper for further analysis [23].

2.3. Bibliometric Analysis

Bibliometric analysis is effective in analyzing research conducted in a specific research
field with a large amount of data. It helps discover the evolution of research activities in a
specific field and can also help identify emerging areas in that field [24]. The bibliometric
analysis was conducted using publications searched from the Web of Science database.

This paper is based on visual analytic functions executed in a bibliometric analysis
software called Citespace [25]. Citespace is a java-based bibliometric analysis software
tool to visualize and analyze temporal and structural patterns in scientific literature [26].
To obtain the required results, we set parameter thresholds in the software, following its
instructions. The software has been constantly updated in recent years to accommodate
various research objectives for visual analytic tasks [25]. In this study, we used Citespace
5.8.R3 (64 bit) [27].

2.4. Thematic Analysis

In addition to the bibliometric analysis, we identified several major research hotspots
in irrigated agriculture in the LMB—for example, climate change, environmental issues,
human alterations to flow regime due to hydropower generation, the impact of irrigation
water diversion on downstream water uses and ecosystem health and so forth. The positive
impacts of hydroelectric power reservoirs are also explored. In addition, we also evaluate
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transboundary water resource management across riparian countries from the perspective
of the WEF nexus.

Figure 2 illustrates the organization of the study presented in this paper. First, we
established a literature dataset. Second, we conducted a bibliometric analysis to identify,
categorize and prioritize topics of high relevance and importance regarding irrigation in
the LMB. It also categorizes the institutions and countries of the leading authors who wrote
those articles. Third, with these findings, a thematic review was also carried out, focusing
on each of the four identified areas. The bibliometric analysis identifies the patterns of the
literature, whereas thematic review moves one step further to explore key issues under
each selected theme. This review aims to tap into recent publications on irrigation in the
LMB to produce a systematic review on key issues regarding irrigation in the basin.

Figure 2. Overall organization of review of LMB irrigation.

3. Bibliometric Analysis Results

3.1. Literature Statistics

A total of 270 publications related to irrigation in the LMB were chosen from the
body of literature extracted from the Web of Science database, after manually excluding
publications that are not related to the research topic. The bar chart of Figure 3 shows the
number of published articles per year, which has an increasing trend from 2000 to 2021.
In 2019, there were over 35 publications related to irrigation in the LMB. The number of
publications is still rather low, considering the importance of this topic. The line on Figure 2
shows citations of those publications, which has been rapidly increasing since 2006.

Figure 3. The number of publications and citations related to irrigation in the LMB.
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Table 2 shows that most of the dataset’s publications are centered on environmental
sciences, ecology, agriculture, water resources and plant sciences. Most articles about irri-
gation in the LMB focus on ecological and environmental, agricultural and water resources
aspects. The Mekong River’s water crisis has long been a major regional issue [28,29].
Furthermore, some articles [30–32] also analyzed irrigation from the regional economic
point of view.

Table 2. Statistical results in research areas of the selected dataset.

Research Areas Record Count % of 270

Environmental Sciences Ecology 189 70.0%
Agriculture 167 61.9%

Water Resources 162 60.0%
Plant Sciences 100 37.0%

Meteorology Atmospheric
Sciences

78 28.9%

Marine Freshwater Biology 76 28.2%
Biodiversity Conservation 68 25.2%

Geography 65 24.1%
Business Economics 61 22.6%

Science Technology Other Topics 61 22.6%
Engineering 59 21.9%
Mathematics 50 18.5%
Energy Fuels 41 15.2%

Geochemistry Geophysics 40 14.8%
Oceanography 40 14.8%

Physical Sciences Other Topics 37 13.7%
Geology 36 13.3%

Public Environmental
Occupational Health

36 13.3%

Fisheries 30 11.1%
Food Science Technology 25 9.3%

Table 3 shows the distribution of those selected 270 articles in various academic jour-
nals. Most of the articles were published in agriculture-related journals even though they
were widely distributed. Several journals, such as Water, Agricultural Water Management,
Field Crops Research, Advances in Global Research, Paddy and Water Environment, and Science of
The Whole Environment published more papers on LMB irrigation than other journals.

Table 3. Journal-wise distribution of the selected articles.

Journal
Impact Factor

(2021)
H-Index (2021)

Average Number
of Citations per

Paper (2021)
Record Count

Share in Total
Number of

Selected
Publications

Water 3.530 69 7.91 9 3.3%
Agricultural Water Management 6.611 139 13.67 7 2.6%

Field Crops Research 6.145 161 19.56 7 2.6%
Advances in Climate Change

Research
4.746 30 5.93 6 2.2%

Paddy and Water Environment 1.554 38 9.24 6 2.2%
Science of The Total Environment 7.963 221 6.29 6 2.2%

Hydrological Processes 4.015 128 27.12 5 1.9%
International Journal of Remote

Sensing
2.581 106 10.47 5 1.9%

Remote Sensing 5.076 161 25.19 5 1.9%
Water International 2.22 57 9.48 5 1.9%

Ambio 4.022 97 23.87 4 1.5%
Food Security 4.603 62 16.42 4 1.5%

Frontiers in Environmental
Science

5.646 48 8.22 4 1.5%

Journal of Health and Pollution 2.249 10 4.82 4 1.5%
Journal of Hydrology 4.646 203 36.90 4 1.5%
Applied Geochemistry 3.621 121 24.86 3 1.1%
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In addition, we also summarized countries of origin of the authors’ affiliations (Table 4)
and the highly cited papers, as shown in Table 5. Table 4 shows that 27.8% of the first
authors of the selected publications are from Vietnam, 20.9% from the United States, 18.9
from Japan, 17.0% from Australia, 13.7% from China and 10.7% from Cambodia. This
implies that irrigation in the LMB has drawn broad attention beyond riparian countries in
the region.

Table 4. Countries of origin of authors.

Country Paper Record Count % of 270

Vietnam 75 27.8%
United States of America 59 21.9%

Japan 51 18.9%
Australia 46 17.0%
P.R. China 37 13.7%
Cambodia 29 10.7%

Laos 24 8.9%
Thailand 23 8.5%
Germany 18 6.7%

Netherlands 15 5.6%
England 10 3.7%

Table 5. Citations of the selected publications on LMB irrigation.

Publication Average per Year Total

Matthew L. Polizzotto [33] 30.6 429
Laurent Charlet [34] 13.4 214

Toshihiro Sakamoto [35] 12.4 198
Ingjerd Haddeland [36] 11.3 181

N.T. Sona [37] 16.8 168
Toshihiro Sakamoto [38] 14.0 168

Polya, DA [39] 9.8 167
Matti Kummu [40] 10.8 151

Benjamin D. Kocar [41] 9.6 135
F. Su [42] 18.3 110

Mauricio E. Arias [43] 13.1 105
Jory S. Hecht [44] 34.3 103

Nguyen Minh Dong [45] 9.9 99
Mauricio E. Arias [46] 9.3 93

Nguyen-Thanh Son [47] 10.8 86
Chandrashekhar M. Biradar

[48]
7.3 80

Thi Thu Ha Nguyen [49] 7.9 79
Shawn G.Benner [50] 5.4 76
Gert-Jan Wilbers [51] 9.4 75

Toshihiro Sakamoto [52] 5.6 73

Table 5 lists the average number of citations per year and the total number of citations
of highly cited publications on LMB irrigation, in descending order. The number of citations
can explain the influence of an article in the field of the subject. At the same time, the
number of citations has a close relationship with the quality of periodicals. The first few
articles with a high number of citations focus on irrigation-related environmental issues in
the Mekong River basin, the spatiotemporal distribution of rice phenology and cropping
systems, the effects of irrigation, agriculture drought and so on.
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3.2. Collaboration Analysis

Citation networks and co-citation networks have been long studied in information
science and other disciplines [53]. Co-citation relations serve as a fundamental grouping
mechanism [54]. We used Citespace to generate collaboration network graphs, as shown in
Figure 4. In Figure 4a,b, we examined the distribution of research institutions and countries
that the authors were affiliated with at the time those articles were published. The size of
each node represents the number of citations to the corresponding article in this dataset.
The theme of each cluster of cited articles is algorithmically labeled.

Figure 4. Bibliometric analysis results for cooperation network analysis: (a) institutions of authors;

(b) countries of affiliated institutions; (c) co-citation analysis.
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It gives a rough structure of the literature dataset generated using Citespace with the
theme of institutions and countries of the authors. Citespace aggregates similar articles
into a cluster with concentration, although the degree of concentration varies considerably
between clusters. Each cluster generates a tag, which is assigned automatically by Citespace.
The nodes in the figures are references cited by citing articles, and the distance between
nodes represents the degree of association of keywords between articles. It is also reflected
in the relative size of the different cluster tags. For example, “irrigation development” were
studied by the National University of Singapore, the World Wildlife Fund, the Australian
National University, and the International Water Management Institute. The labels of all
nodes can be displayed in a picture. It is generally necessary to adjust the thresholds in
the cluster to obtain a collaboration analysis graph that clearly illustrates the institutions.
Some research themes deviate significantly from the clustered themes on the figure and,
hence, are not displayed by the software.

Regarding the countries of authors’ affiliations, Southeast Asian countries such as
Vietnam, Laos and Cambodia have mainly focused on issues related to irrigation in the
downstream areas. Research institutions in the United States, United Kingdom, Nether-
lands and China also made considerable contributions to those selected publications on
LMB irrigation.

Figure 4c shows the co-citation results from the bibliometric analysis. Co-citation
is used to determine the missing links between two relevant items using shared third
items [55]. As mentioned above, each cluster has a label that represents the topic of the
entire cluster. Figure 4c helps identify key literature for cross-disciplinary ideas. The label
of clusters also shows a correlation between the articles that focus on Mekong irrigation
issues, and environmental concerns, with a strong regional focus on the Mekong River
Delta. Furthermore, there is a focus on issues between upstream hydropower development
and irrigation of the LMB. Furthermore, climate change has a significant impact on the
hydrological regimes in the Mekong River basin.

4. Thematic Analysis and Application of Remote Sensing

Figure 5 illustrates the matrix structure of the thematic analysis, which is organized
based on initial analysis of the literature and on findings from the bibliometric review. Ac-
cording to modeling approaches, we categorized existing studies into land surface process
modeling, systems modeling at river basin scale and reservoir operations. Considering
irrigation, watershed management and hydropower as sub-systems in the LMB, land sur-
face models nowadays incorporate irrigation module to analyze the effect of irrigation
water withdrawal on downstream river flow; systems modeling at the river basin level, or
river basin management modeling, address various complex issues related to water man-
agement in the basin; and reservoir operations modeling usually focuses on hydropower
optimization and related downstream impacts. Within each sub-system, topics for review
are organized into five aspects, including nature resources, socioeconomic, management,
environment and infrastructure.

We selected several themes for further analysis, which are closely related to agricultural
irrigation in the LMB: irrigation and crop production, water availability and land use,
climate change and impact, environmental protection and soil and water conservation and
integrated water resources management. Furthermore, remote sensing can be an effective
tool for monitoring and managing irrigation in the Mekong region. Remote sensing can
provide valuable insights into irrigation systems, crop growth and water availability in the
Mekong region. By leveraging remote sensing technology, water authorities, farmers and
policymakers can work together to create more sustainable and efficient irrigation systems
that meet the needs of both people and the environment.
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Figure 5. Organization of thematic review.

4.1. Irrigation and Crop Production

Irrigated crop production in the LMB plays an important role in regional economy.
Moreover, Vietnam and Thailand are among the top rice exporters in the world. Thus,
rice production in this region can have profound impacts on world rice prices. In the
LMB, rice is the most important irrigated crop by irrigated crop area and by irrigation
water consumption. Growing competition for water between irrigation and other economic
sectors due to rapid population and economic growth poses a challenge to irrigation
water management and requires close attention [56]. The Mekong River Basin features
various hydraulic irrigation structures, such as dams, canals, weirs, pumping stations,
embankments and water management systems. These structures play a crucial role in
regulating water flow, distributing water for agriculture, managing floods and supporting
crop cultivation. They contribute to enhanced agricultural productivity and livelihoods in
the region.

Existing studies on irrigation estimated gridded irrigation water requirement in the
LMB and other basins around the world [57]. For China, the impact of climate change was
analyzed using the Community Land Model, version 4 [58]. Tatsumi et al. [59] conducted
a detailed analysis of the impact of irrigation water abstraction on river flow using a
simulation model to depict the changes in serval indicators within the LMB area. For the
LMB, the CROPWAT model was also used for estimating irrigation water requirements [60].
In general, the literature suggests that more advanced irrigation technologies, appropriate
crop varieties and enhanced agricultural extension are promising in improving irrigated
agricultural production in the LMB.

In irrigation and crops, remote sensing can be used to map irrigation infrastructure,
such as canals, reservoirs and water distribution systems. Landsat detected a significant
decrease in the area of three types of rice crops as a way to judge the impact brought
about [61]. This can help water authorities to identify areas where infrastructure upgrades
or repairs are needed and to monitor changes in irrigation patterns and water use. Remote
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sensing has better applications in assessing water use and predicting crop water require-
ments. In crop health area, remote sensing can be used to assess crops health and to detect
stress, disease or pest infestations [58]. This information can help farmers to take timely
actions to mitigate crop losses and optimize water use and fertilizer application.

Remote sensing is a powerful technology that has found various applications in
agriculture, with irrigation being a significant beneficiary. One of the critical aspects of
effective irrigation management is determining the water requirements of crops, which is
directly related to evapotranspiration (ET). Evapotranspiration is the combined process of
water evaporation from the soil surface and transpiration from plant leaves. Remote sensing
provides a non-intrusive and efficient method to monitor and estimate evapotranspiration
over large agricultural areas. The process involves the use of satellite imagery, particularly
the thermal infrared band and vegetation indices, to assess the temperature and health of
crops. These data are integrated into surface energy balance models, which account for
various factors affecting ET, such as solar radiation, sensible and latent heat fluxes.

4.2. Water Availability and Land Use

The country-wise water availability in the Mekong River Basin requires reassessment
and a detailed description. The water availability in each country may fluctuate over time
due to various factors, including changes in rainfall patterns, climate conditions, water
usage and development projects such as dams and irrigation systems. A comprehensive
reassessment would involve collecting and analyzing up-to-date data on water resources,
including surface water and groundwater, in each country. It would also consider the
impacts of existing and planned hydraulic structures, agricultural practices, industrial
water usage and environmental considerations. There are significant variations in water
availability in the Mekong region over time, including water levels in rivers, lakes and
reservoirs. Water availability and land use are very important in the Mekong region, where
water resources are scarce and unevenly distributed. Changes in land use patterns and
flood conditions play an important role in the livelihood of local farmers, and remote
sensing can be used to comprehensively monitor land use changes and flood conditions in
the area and address the causes of land use changes [62].

Remote sensing information is used as a corresponding monitoring indicator to predict
the timing and intensity of extreme events, including droughts and floods [63], as well as
to allocate water resources more efficiently to manage them more effectively. Satellites are
revolutionizing land use monitoring by providing unprecedented accuracy, resolution and
coverage. Satellite-based land use monitoring has the capability to track land cover changes
efficiently and effectively over a large range. This technology enables the detection of
subtle changes in land use patterns [64], which can inform land management decisions and
support sustainable development efforts. With its ability to capture frequent and consistent
imagery, satellite-based land use monitoring has become an indispensable tool. Remote
sensing can be used to identify areas that are currently being irrigated and to estimate
the total area under irrigation. This information can be used to assess the overall water
demand and to monitor changes in irrigation patterns over time.

4.3. Climate Change Impacts

Climate change is expected to affect the amount and timing of river flow in the LMB,
and droughts and floods are likely to become more frequent [2]. On one hand, records
already show that drought disaster is becoming more common in the region, resulting in
reduced soil moisture, lower river flow and inadequate irrigation water supply [65–67].
On the other hand, floods may damage irrigation facilities, thereby restricting agricultural
water use and even making irrigation impossible [68]. In addition, flood disasters can also
cause water source pollution and water quality degradation, which have adverse effects
on crop yield and quality [69]. Excessive soil moisture and high groundwater table also
harm crop growth and increase the occurrence of pests and diseases of crops [70]. In this
situation, the construction of flood prevention and drainage measures are essential. Faced
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with future climate-related stresses, crop profitability can be increased through water use
efficiency, fertilizer management and crop management to improve the resilience of the
local farming system [71].

Climate action is a crucial component in achieving the United Nations’ Sustainable
Development Goals, particularly in the context of sustainable irrigation practices. With
the increasing impact of climate change on global water resources, it becomes imperative
to implement effective measures that address both irrigation needs and environmental
concerns. By embracing sustainable irrigation methods, we can address the challenges
posed by climate change while striving for a more sustainable and food-secure future.
Through collaborative efforts between governments, stakeholders and communities, we
can pave the way for a resilient and environmentally conscious approach to agriculture
and water management.

Climate change impacts irrigation: rising temperatures, erratic weather, prolonged
droughts and extreme events disrupt irrigation schedules and reduce water availability.
Melting glaciers and reduced snowpack diminish natural water supply, while increased
evapotranspiration intensifies water demand. Floods and storms damage irrigation in-
frastructure. Solutions include adopting innovative technologies like remote sensing and
precision irrigation, implementing water-use efficiency incentives and promoting sustain-
able water management practices. Collaboration is crucial to secure food production and
conserve water resources for the future.

Surface temperature monitoring using remote sensing is one of the key variables in
climate forecasting and climate change research, and therefore, the analysis of its behavior
is essential to assess climate variability. Remote sensing technology can be used to increase
people’s understanding of the overall climate system and its changing laws. It can continu-
ously observe and analyze the earth’s surface, ocean and atmosphere at different time and
space scales, so as to observe the climate system and investigate climate-related processes
or long-term and short-term phenomena [72,73].

4.4. Environment Impacts

Groundwater overdraft for irrigation causes land subsidence, which is a serious
problem in the Mekong River Delta [74]. Sea water intrusion becomes more serious with
land subsidence, sometimes making groundwater unusable [75,76]. In the Mekong Delta,
salinity intrusion has a direct impact on agriculture and domestic water uses [75].

The development of irrigation systems has a direct impact on local aquatic resources [77],
adversely affecting aquatic fauna, especially fish [78–81]. The shrinkage of the Tonle Sap
Lake has been attributed to climate change [82–86]. The reduction in rainfall in the Mekong
Basin area has led to a decline in runoff from the Mekong [84], and the flow regime of the
Tonle Sap has been influenced by the Mekong’s hydrological fluctuation and irrigation
water alternations. The environmental changes that are taking place in the Mekong region
are manifested in terms of land use and land cover types. The causes of this change are
various, including river damming, an increase in agricultural land and frequent natural
disasters [87]. In arid and semi-arid regions of the world where water resources are scarce,
agricultural issues are also the focus of local water crises [88].

Remote sensing data can be used to evaluate the environmental changes of large-scale
river systems in the study of land cover changes in Mekong River Basin and their impacts
on rivers [89]. The establishment of eco-environmental status indicators relies heavily on
remote sensing technology, which is of great significance to the monitoring and analysis of
ecosystems and environment on a large scale or even on a global scale. Wu et al. studied
the use of remote sensing technology to point out natural and human pressures, regional
natural environmental conditions, ecosystem health, land cover changes and responses to
pressures [90].
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4.5. Comprehensive Water Resource Management
4.5.1. Rational Water Allocation

The overarching goal of water resources management in the Mekong region is to enable
the maximization of water-using benefits through equitable and efficient water allocation
across all countries, water-using sectors and stakeholders [91]. Given the complexity
of water management in the region, negotiation is desirable and necessary in solving
conflicts in water allocation and management [92]. Modeling techniques in this area
can be used to estimate the gains and losses under different cooperation arrangements.
For instance, the Water Management Group from HR Wallingford seeks to recognize
Pareto-optimal water allocation solutions across various users [93]. Trade-off analysis is a
persuasive tool to tackle interdependence and complexity. Elsewhere, the mixed-integer
linear programming method was used to obtain maximum irrigation net benefits [94].
Further studies using mathematical models are desirable to look into the complex challenges
raised by different patterns of cooperation, damming schemes and water requirements of
riparian countries [95–98]. Remote sensing can be used to optimize irrigation scheduling
by monitoring water use and crop water stress. This information can help farmers to avoid
over- or under-irrigation, which can lead to water wastage or crop stress.

4.5.2. Transboundary Water Management

Effective irrigation practices in the Mekong River basin are essential to enhance
agricultural productivity and mitigate the impacts of climate change on water availability.
However, transboundary water management has become a complex issue due to the shared
nature of the river among multiple countries.

To address these challenges, regional cooperation is crucial. Collaborative efforts
between the Mekong River countries are necessary to develop a comprehensive and inte-
grated approach to water management. This involves sharing data, coordinating water
release from upstream dams and jointly planning for irrigation and hydropower develop-
ment. By promoting dialogue and cooperation, the countries can work together to balance
the water needs for irrigation, energy production and environmental sustainability.

Transboundary water management in the Mekong River requires sustained cooper-
ation and commitment among the riparian countries to address the complex challenges
posed by shared water resources effectively. Through effective management and collabora-
tive efforts, the Mekong River basin can achieve a balance between economic development,
water security and environmental conservation for the benefit of all involved nations and
their people.

4.5.3. Reconciling Hydropower and Irrigation

Upstream reservoirs store and release river flow for power generation, while down-
stream agricultural production relies on water diverted from the river channel to irrigate
crops. Hydropower does not really “consume” water; it relies on the hydraulic head created
by the elevation difference between reservoir water level and tail water level, and flow
running through the turbines. Thus, managing the competition for water uses between
these two sectors is largely about reconciling the timing and magnitude of water release for
hydropower generation and that of irrigation water withdrawal.

Hydropower development in the Mekong River basin has attracted wide attention
regionally and globally [99] due to its potential impacts on local hydrological conditions,
agricultural development and ecosystems. Such impacts are often uncertain, significant
and sometimes irreversible [8]. For instance, studies found that the loss of fisheries due
to dam construction in the basin may lead to significant additional land and water uses
for food production in maintenance of food security in the region [100,101]. It is worth
noting that upstream reservoir storage can augment downstream river flow during the
dry season and in dry years, thus benefiting downstream irrigation. To explore effective
transboundary water management strategies in the Mekong, based on a real case in the 2016
drought in the basin, Zhang et al. [102] analyzed upstream reservoir operation strategies
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that can effectively mitigate drought impacts in the downstream. In some cases, existing
or emerging conflicts in transboundary water management may even provide a more
productive and transformative way forward than purely cooperative arrangements [103].
Efforts must be made in all participating processes to reconcile competing and possibly
conflicting interests [104].

Remote sensing can be used to assess the potential of hydropower resources by
analyzing water flow rates and elevation changes. This information can be used to identify
areas where hydropower potential is high and to plan hydropower development projects
more effectively [105]. The safety of dams and other water infrastructures using remote
sensing is vital. This includes structural health monitoring [106] and changes in water
levels, detecting seepage or erosion and assessing the stability of the surrounding terrain.

4.5.4. WEF Nexus in the Mekong

A growing number of scholars refer to the social relationships and biophysical inter-
flow linking water, food and energy networks as “nexus” to draw attention to important
interactions and risks that have been overlooked [107–109]. Although interest in synergies
and trade-offs in the provision of the water-energy-food nexus is growing rapidly, proposals
and recommendations for technological interventions are increasing. However, it is unclear
what value the adoption of a nexus perspective has in understanding public policy for
water resource management [110]. Weitz [110] also pointed out that our understanding
of the meaning of managing WEF relationships and the conditions under which it can or
cannot work is still very limited, and more empirical research is warranted on this issue.

The broad scope of the topics of interest discussed above (i.e., hydropower generation,
flow regime change and water supply for agriculture and ecosystems downstream) repre-
sent a complex water–energy–food nexus in the entire Mekong River Basin. The “water-
energy-food” nexus was established primarily for increasing resource-using efficiency,
reducing trade-offs, creating synergies and improving overall watershed management to
enhance water, energy and food security. A systematic investigation of multisectoral and
transboundary tradeoffs within this nexus can provide scientific guidance for the riparian
countries to cooperate effectively.

The emergence of this interconnected relationship is related to the underlying drivers:
the critical importance of water, energy and food for human survival and the need to ensure
their security, as well as greater awareness of the social and economic risks posed by the
increasing scarcity of natural resources [111]. The nexus approach may help to identify
co-benefits and external costs at the international level associated with actions in different
sectors. Studying transboundary river basin WEF coupling relationships from a historical
perspective allows for a more rigorous institutional analysis of benefit sharing in different
sectors.

Water is an active driving force in the WEF nexus, and together with food and en-
ergy, the three resources are indispensable for human society. Society and the economy
are significantly impacted by the growing shortage of resources such as water. There-
fore, water resource planning and management are decisive factors [111]. Existing WEF
studies include the quantitative study of resource flow and the degree of dependence,
evaluation of technical indicators and policies and quantitative study of the degree of
performance of the entire system [112]. There are also review articles that illustrate the
concept of WEF nexus [113–116], simulation tools [117,118] and nexus governance [110] or
implementation [119].

The water–energy–food security nexus is particularly challenging in transboundary
river basin management. The WEF nexus is found to be useful because more actors
are recognizing the interdependence between water management and food and energy
production. Through the dialogues at the World Environment Forum, many actors saw
themselves as a reasonable and sectoral entry point in a compelling, new, multi-sectoral,
interdisciplinary and cross-border discussion [120]. The concept of relationship has different
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manifestations according to the background, scale and geographic environment of the
review [121].

In WEF nexus, remote sensing technology also plays an important role. Various remote
sensing can be used to determine and analyze the technical feasibility of integrating urban
agriculture, rainwater harvesting and photovoltaic systems [122]. Moreover, using the
WEF framework based on GIS, stakeholders can also evaluate the utilization of resources
to achieve sustainable productivity [123].

5. Conclusions

Enhanced awareness and understanding of water management in general and irriga-
tion in the LMB are of great importance for cross-border cooperation on water resources
management for achieving equitable, rational and sustainable water uses and for promot-
ing sustainable economic prosperity and societal development in riparian areas. In this
paper, we conducted a bibliometric analysis of irrigation in the LMB by tapping into a large
volume of publications. Based on identified key thematic areas, we further synthesized
key issues and findings from existing studies through a thematic review. The bibliomet-
ric analysis systematically summarized key statistics and features of the literature body
concerning LMB irrigation, such as journals where those articles were published, authors’
affiliations and countries of origin, and collaborator network. We found that LMB irrigation
has drawn wide attention within and outside of the region, and the number of publications
has been rapidly increasing in recent years. The thematic analysis is based on the results
of bibliometric analysis, focusing on themes including irrigation management and crop
production, transboundary water management, climate change, environmental impacts
and comprehensive water resources management.

Remote sensing technology has played a great role in different fields of agricultural
irrigation. This review of remote sensing applications in this paper is expected to advance
socio-hydrological research and inform science-based management decisions and policy
formulation for sustainable food-energy-water, livelihoods and ecosystem development in
the Mekong region, providing a strong basis for decisions to promote sustainable ecological
development in the Greater Mekong Subregion.

We advocate for heightened awareness and understanding of water management,
specifically irrigation in the LMB. This will facilitate cross-border cooperation on water
resources, promoting equitable and sustainable water usage and contributing to economic
prosperity and societal development in riparian areas. It is strongly suggested to prioritize
the adoption of remote sensing technology in agricultural irrigation for well-informed
decision-making and sustainable development in the Mekong region. By incorporating
research insights and fostering collaboration, we can ensure responsible water use amid
evolving challenges, such as those posed by climate change impacts.
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Abstract: In this study, the spherical particle model and ten nonspherical particle models describing

the scattering properties of snow are evaluated for potential use in precipitation estimation from

spaceborne dual-frequency precipitation radar. The single scattering properties of nonspherical

snow particles are computed using discrete dipole approximation (DDA), while those of spherical

particles are determined using Mie theory. The precipitation profiles from WRF output are then input

to a forward radiative transfer model to simulate the radar reflectivity at Ka-band and Ku-band.

The results are validated with Global Precipitation Mission Dual-Frequency Precipitation Radar

measurements. Greater consistency between the simulated and observed reflectivity is obtained

when using the sector- and dendrite-shape assumptions. For the case in this study, when using

the spherical-shape assumption, radar underestimates the error of the cloud’s top by about 300 m

and underestimates the error of the cloud’s area by about 15%. As snowflake shapes change with

temperature, we use the range between −40 ◦C and −5 ◦C to define three temperature layers. The

relationships between reflectivity (Z) and precipitation rate (R) are fitted separately for the three

layers, resulting in Z = 134.59·R1.184 (sector) and Z = 127.35·R1.221 (dendrite) below −40 ◦C.

Keywords: shape of snowflakes; radiative transfer; Z–R relationship; DPR; detection threshold

1. Introduction

Precipitation is one of the most crucial processes in the global water cycle and energy
balance, not only because water is a fundamental need for all life around the world but also
because significant energy will be released to the atmosphere accompanied by the phase-
changing process at different altitudes from the surface to the cloud top [1–3]. Such energy,
ending up as latent heat (LH), is the primary driving source of atmospheric circulation
and acts to transfer a significant proportion (about 23%, [1]) of solar energy to atmospheric
kinetic energy. Therefore, knowing the vertical distribution of precipitation rates is essential
to understand the thermodynamics inside storms.

To measure the vertical structure of precipitation at a global scale, a satellite precipita-
tion radar device was sent to space in 1997. The Tropical Rainfall Measuring Mission [4–6]
and the Global Precipitation Mission [7–9] are the only two in history that carried single-
and dual-frequency precipitation radar (hereafter DPR) working at 13.6 GHz and 35.5 GHz
to directly measure the backscattering echo from precipitating particles at a vertical reso-
lution of 250 m and 125 m, respectively. Many formulas describing the radar reflectivity–
precipitation rate (hereafter Z–R relationship) have been published to retrieve precipitation
rates from the radar measurements.

A challenging task in Z–R relationship parameterization is treating solid phase par-
ticles. Traditionally, the spherical-shape assumption was used to calculate the optical
properties, including the attenuation coefficient, scattering coefficient, and phase function,
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based on Mie theory [10,11]. However, it is known that solid particles such as cloud ice,
snow, and graupels in the real atmosphere are not spherical. Instead, their shapes can be
complicated both as single crystals and as aggregates. Many studies have been published
to show the nonspherical effects in the microwave spectral region [12–18]. Some studies
have applications in precipitation radar retrieval [19,20].

Will treating particles as nonspherical necessarily be better than using the sphere
assumption? The answer may not be as simple as expected. Since each radar bin con-
tains many particles with different shapes in different size distributions, the measurement
of radar reflectivity is a synergetic effort that involves accounting for backscattered en-
ergy from different shapes at different scattering angles. Moreover, the shape of solid
phase particles depends on temperature [21–23]. For example, in temperatures colder
than −40 ◦C, simple columns, plates, or plate-like polycrystal-shaped ice dominate in
the atmosphere [24,25] due to the lack of water vapor [26]. In temperatures from −40 to
−20 ◦C, particles grow by further deposition, aggregation, and collection and show much
more complicated shapes, including bullet-rosette, dendrite, and ice aggregates [24,27–29].
With higher temperature, the ice phase particles partly melt, starting from the periphery,
especially the corner of the particles. This results in liquid–solid mixed-phase particles with
particular shapes, such as the water-coated ice ball shape [30–32]. Therefore, the parameter-
ization of the shape of ice phase particles in radiative transfer calculation is complicated.

There are few validation studies of radiative transfer modeling of nonspherical effects
in microwave regions from real satellite observations. Kulie et al. [33] simulated the bright-
ness temperature between 6.9 GHz and 157 GHz for precipitation observed simultaneously
by CloudSat’s Cloud Profiling Radar (CPR), the Advanced Microwave Scanning Radiome-
ter for Earth Observing System (AMSR-E), and the Microwave Humidity Sounder (MHS).
They found that a few ice particle models demonstrate low bias among 25 tested, especially
the long hex column, sector snowflake, 3-bullet rosette, short hex column derived from
Liu [13], and aggregate derived from Hong [34]. Leinonen et al. [35] and Kulie et al. [36]
compared the observed reflectivity derived from the Wakasa Bay field campaign with
the simulated reflectivity under different ice particle shape assumptions through the re-
lationship between two dual-frequency ratios: DFRKu/Ka and DFRKa/W. They found that
nonspherical-shape assumptions effectively interpreted the observed data. Olson et al. [19]
interpreted radar observations from the ER-2 airborne High-Altitude Imaging Wind and
Rain Airborne Profiler (HIWRAP) and then simulated upwelling microwave radiances for
channels in which the Conical Scanning Millimeter-Wave Imaging Radiometer (CosMIR)
operates. They concluded that the nonspherical crystal/aggregate snow particle model
limited the discrepancies between the simulated and observed CosMIR radiances at 89
and 165.5 GHz to less than 4 K, and the discrepancies were larger than 8 K when using
homogeneous ice–air spheres.

In this study, we focus on simulations and satellite validations of radar reflectivity
from solid-phase precipitating particles at Ku and Ka band, and we attempt to answer the
following questions: (1) What are the performances of simulations using different shape
assumptions and using GPM DPR observations as a reference? (2) What are the effects
of the temperature-dependent shape assumption? (3) What are the associated retrieval
biases in the Z–R relationship, precipitation top height, and rain area when using different
shape assumptions?

The remainder of this paper is organized as follows. Section 2 introduces basic
information on the precipitation case, as well as the setting of WRF and the microwave
radiative transfer model. Section 3 details the analyzed results for the case, including
the verification of the simulations, the fitted Z–R relationships, and the effect of shape
assumptions on detectable errors of the case. Finally, Section 4 summarizes the method and
the findings of this study.
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2. Data and Method

A snowfall event in East China at about 16:30 UTC on 6 January 2018 is used in this
study. The flow chart of this study is shown in Figure 1. Given the lack of airborne radar
observation data and the limited precision of radar observation, WRF output is utilized as
an input for radiative transfer calculation, in which water content, the particle size distri-
bution of five types of hydrometers (hereafter hydrometer profiles), and the atmospheric
environment (temperature, pressure, and relative humidity) are needed. When calculating
radar reflectivity for GPM DPR at Ka-band (35.5 GHz) and Ku-band (13.6 GHz), a sphere
assumption, ten other nonspherical-shape assumptions, and a temperature-dependent
shape assumption are considered. Then, by comparing the simulated reflectivity products
and DPR observations, the accuracy of simulations and performances with different shape
assumptions can be revealed. Beyond that, the associated retrieval bias in Z–R relationships,
precipitation top height, and rain area are analyzed by combining the density of solid water
simulated by WRF and reflectivity simulated by the radiative transfer model.

 

Figure 1. Framework of this study.

WRF V4.0 was used in this study. The model simulation used two nested domains, as
shown in Figure 2. The inner and outer spatial resolutions were 4 km (convective permitting
resolution) and 12 km, respectively. The cumulus parametrization scheme was turned on
only for the outer domain. Other detailed simulation parameter settings are shown in
Table 1. In the WRF output, the hydrometer profiles and the atmospheric environment
were needed for radiative transfer simulations, while the hydrometer profiles are also used
when analyzing Z–R relationships and cloud detection errors. To evaluate the results of
the WRF simulation, the DPR products were compared with the precipitation water path
(PrecipWP, includes snow, graupel, and rain), solid water path (SWP, includes snow and
graupel), and liquid water path (LWP, includes rain). The reason why the water path is
used instead of precipitation rate is that to compare the difference between solid and liquid
water, only the water path distinguishes the phase among DPR products.

The radar simulator used in this study is the University of Science and Technology of
China (USTC) Space-Borne Equivalent Radar Simulator (USERS) [37], which simulates the
radiative transfer process of five hydrometers (cloud water, cloud ice, rain, snow, graupel)
separately. To that end, it makes full use of the outputs of WRF that are given according
to the type of hydrometer. During the simulation, all liquid water drops are assumed to
be spherical, and their optical properties are calculated based on Mie theory. Solid-phase
precipitating particles are assumed to have eleven shapes [13], including sphere, four of
the five column/plate shapes designed in the model, four rosettes with different bullets,
sector, and dendrite, as shown in Figure 3. Aggregations are also simulated. However, the
simulated reflectivity is not closer to the observation than that under a single crystals shape
assumption, and it is similar to that which short column performs (shown in Supplementary
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Materials). Considering aggregations may be a collection of different single crystals, we
consider single crystals first. The optical characteristics of these shape assumptions were
simulated using discrete dipole approximation (DDA) [38] and called using a lookup table
mode in USERS.

Figure 2. Domain setting of WRF.

Table 1. Setting of the WRF simulation.

Domain ID 01 02

Lateral/initial data CFSv2 0.5◦ × 0.5◦ 6 hourly
MP physics Morrison
CU physics Modified Tiedtke scheme None
Boundary layer physics Mellor–Yamada–Janjic TKE scheme
Surface layer physics Monin–Obukhov (Janjic) scheme
Land surface physics Unified Noah land-surface model
Longwave radiation physics RRTMG scheme
Shortwave radiation physics RRTMG scheme
Time step 60 s 20 s
Spatial resolution 12 km 4 km
Time range 1 January 2018–8 January 2018
Output interval None 30 min
Feedback False

Figure 3. Ten nonspherical-shape assumptions of snowflakes used in radiative transfer simulation

(from Liu GS, 2008).
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In this study, the two parameters are set in WRF microphysical schemes as:

N(D) = N0Dµe−λD. (1)

where D is the diameter, N0 (unit: 1/m4), µ and λ (unit: 1/m) are the intercept, spectral
and slope parameter of the PSD. In Morrison microphysics scheme used in this study, µ is
specified and the slope parameter λ is calculated by:

λ =

[

cNΓ(µ+ d + 1)

qΓ(µ+ 1)

]1/d

. (2)

Here, number density N (unit: 1/kg) and q (unit: kg/kg) are obtained from WRF
directly, and c = ρπ

6 (kg/m3) and d are two parameters.

In the assumed mass–diameter relationship m = cDd, ρs (the density of the particles)
are set to be 977, 977, 500, 100, and 900 kg/m3 for cloud water, rain, cloud ice, snow, and
graupe, respectively. The coefficients c and d are determined to be associated. Therefore,
the mass-weighted diameter Dm = (µ + 2)/λ is determined.

To illustrate the accuracy of simulated radar reflectivity, it is compared with the GPM
DPR product. Only the pixels identified as precipitation pixels by the DPR retrieval algo-
rithm (in which the precipitation rate product of DPR is not the default value) are considered
in this study, which means the signals are free from surface clutter and nonprecipitation
noise. After excluding the influence of noise, the spatiotemporal assimilation of data needs
to be considered. WRF simulated the atmospheric conditions at 16:30 UTC on 6 January
2018, while DPR observed the region from 16:24 UTC to 16:29 UTC (5100–5400 scan) dur-
ing the day. However, this time difference is a tiny gap compared to the time scale of a
mesoscale cloud system. Though any method will cause differences between simulated and
observed signals (Sun and Fu, 2021), spatial assimilation is needed before comparing them.
In the vertical direction, the linear interpolation method is used to interpolate the simulated
radar reflectivity to the vertical resolution of DPR; this method uses 176 layers from the
ground (0 km) to 22 km. In the horizontal direction, the closest simulated profile is used to
present the DPR profile. Considering that, in reality, the solid particles in a cloud system
exist in various shapes, we assume that the proportion of simple-shaped solid particles in
the total solid particles is a function of temperature, and this proportion increases when
temperature decreases.

Hydrometer profiles and simulated radar reflectivity are used to fit Z–R relationships
for eleven shapes of snowflakes, which are later exploited to illustrate the effects of using
theoretical Z–R relationships in the snowfall retrieval algorithm. The fundamental reason
for the effect on the Z–R relationship of rain types and weather conditions is the difference
in microphysical characteristics and microphysical processes, such as the phases of particles
at different temperature layers [39]. Thus, in this study, −40 ◦C and −5 ◦C are used
to distinguish three temperature layers in order to minimize the effect of these issues.
This temperature-dependent approach differs from the DPR retrieval algorithm, which
uses radar reflectivity as an index [4]. However, from a physical point of view, it is
temperature and precipitation rate (R) that determine radar reflectivity, which means that
using temperature as the index is more appropriate than using reflectivity.

3. Results

A single case at 16:30 UTC on 6 January 2018, in East China, was used in this study.

3.1. Correctness of Simulation

Figure 4d shows that WRF simulated two cloud systems, which we labeled cloud
system 1 at (116E, 35N) and cloud system 2 at (121E, 26N). Cloud system 1 does not exist
in the DPR product, which is mainly a snowfall system. However, the simulated position,
horizontal distribution, LWP, and SWP for cloud system 2 are very consistent with the DPR
observed values. Therefore, we focus on cloud system 2 when analyzing the consistency
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between simulated radar reflectivity and observed radar reflectivity (after spatiotemporal
assimilation, only the data in the black box are used). Ground-based observations (dataset
named Weather of Now at 17:00 UTC is used, which represents the weather phenomenon
in the past one hour, as shown in Supplementary Materials Figure S1) illustrate that there
was a large area of snow and rain near the simulated moment in this area. Note that the
minima of detectable radar reflectivity are 5 dBZ (Ka, but about 17 dBZ in the inner swath)
and 12 dBZ (Ku), which means weak precipitation is unobservable. Slight snowfall may
be ignored in the DPR retrieval algorithm (mentioned later), so, understandably, LWP
and SWP in the DPR product are slightly smaller than the simulation results of WRF.
Furthermore, there are some differences between WRF simulation and reality due to the
selection of boundary conditions and parameterization schemes, but this is not the focus of
this experiment.

Figure 4. Satellite observations and model simulations of precipitation at 16:30 UTC on 6 January

2018. (a–c) GPM DPR observed precipitation water path (PrecipWP), solid water path (SWP), and

liquid water path (LWP); (d–f) WRF simulated PrecipWP, SWP, and LWP. Unit: g/m2.

Figure 5 shows cross-sections of radar reflectivity along the red line in Figure 4. Similar
cross-sections of reflectivity along the north gray dashed line are shown in the Supplemen-
tary Materials (Figure S2). It can be easily determined from Figure 5b that WRF simulates
the shape of cloud system 2 well, although the height is slightly overestimated; the magni-
tude of simulated radar reflectivity and that of observed radar reflectivity is quite consistent.
As mentioned before, cloud system 1 is dominated by snowfall, and cloud system 2 by
snow at high altitudes and rain at low altitudes. Therefore, to compare the effects of shape
assumption on radar reflectivity simulation, attention should be paid to the upper level of
cloud system 2 and to cloud system 1. Comparing Figure 5b,f to Figure 5a,e, it is obvious
that when using the spherical-shape assumption, the simulated radar reflectivity at Ka-
band is close to the observed radar reflectivity, while the simulation and the observation
are pretty different at Ku-band. When using the simple-shape assumptions (Figure 5d,h)
for simulation, the situation is just the opposite. This means that the snow and cloud ice
particles in the precipitation cloud are neither spheres nor simple shapes. However, when
using the complex-shape assumption (Figure 5c,g), the simulated radar signal is similar
to the observed signal in both Ku-band and Ka-band, which means snow and cloud ice
particles in the real world are likely to exist in complex shapes. There is a significant feature
of bright-band at about 4 km height observed by GPM DPR, as shown in Figure 5a,e. This
is a strong indicator of a melting layer and the stratiform precipitation type (Houze 1997). It
was found that different shape assumptions resulted in different simulation performances
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of this feature. The dendrite assumption led to a good simulation of clear bright-band,
while simulations with the sphere assumption captured this characteristic but with a rel-
atively weaker signature. In contrast, the short column assumption completely missed
bright-band in the simulation.

Figure 5. Cross-sections of reflectivity along the red line in Figure 4. (a–h) The first column is

for Ka-band, and the second is for Ku-band. The first row represents GPM DPR observations.

From the second to the fourth rows show simulations using sphere, dendrite, and short column

assumptions, respectively. The lighter gray areas show surface echo, and the darker gray areas show

the reflectivity under the detectable threshold (17 dBZ for Ka-band, 12 dBZ for Ku-band). R refers

to the correlation coefficient between simulation and observation for the cross-section. Only the

three most representative assumptions are shown here, but all eleven shape assumptions mentioned

in the Method section are simulated; the complete results are shown in Supplementary Materials

Figures S5 and S6.

The contoured frequency by altitude diagrams (CFADs) of Ka-band reflectivity obser-
vations and those of simulated reflectivity show that, compared to simple-shape assump-
tions (Figure 6b–i), the complex-shape assumptions (Figure 6j,k) or sphere assumption
(Figure 6l) being the CFADs of reflectivity simulation closer to those of observations. More
specifically, the maximum reflectivity of CFAD (Figure 6a) changes with height as follows:
the maximum reflectivity value increases smoothly from ~6 km to ~3 km, and increases
sharply between ~3 km and ~2.5 km, then decreases slightly toward lower levels. A similar
trend can be seen in the CFADs of reflectivity simulation under the sphere assumption
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and complex-shape assumptions. Nevertheless, such a trend cannot be seen in simulation
under the simple-shape assumption.

Figure 6. Contoured frequency by altitude diagrams (CFADs) illustrating the frequency of occurrence

of values of reflectivity at Ka-band at different heights for the sample of cloud system 2. Data are

binned at 1 dBZ intervals at each level and then normalized by the total number of samples in all

levels. (a) CFAD of observation, (b–l) CFADs of simulations using eleven shape assumptions: short

column, block column, thick column, thin column, 3-bullet rosette, 4-bullet rosette, 5-bullet rosette,

6-bullet rosette, sector, dendrite, and sphere. Black curves in (a,b,j,k) show the maximum occurrence

probability of dBZ in each layer.

As for CFADs in Ku-band (Figure 7), CFADs of reflectivity simulation are also closer
to the observation under complex-shape assumptions than others, as the maximum dBZ in
the high altitude (3–6 km) appears at a lower value (~21 dBZ). For the radar reflectivity
simulation under nonspherical-shape assumptions, the maximum value of CFAD appears
at ~25 dBZ (simple shapes) or even higher (the spherical-shape assumption, ~30 dBZ).
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Figure 7. (a–l) same as Figure 6, but at Ku-band.

The dynamic and thermodynamic have a great impact on the precipitation profile
and thus on the reflectivity profile. Therefore, a classification methodology is required.
Reflectivity at low altitude is considered a great indicator as the higher the reflectivity,
the greater the precipitation, and more vigorous convection also often relates to greater
precipitation. Then, in order to avoid the interference of surface echo, reflectivity at the
height of 2 km (hereafter dBZ (2 km)) was used. Figure 8a,b show that simulated profiles
significantly differ from the observed reflectivity profile when dBZ (2 km) is lower than
20 dBZ. The number of effectively observed reflectivity grids (the grids where dBZ (2 km)
has an exact value) is far less than the simulation when dBZ (2 km) is small, so it is too
arbitrary to conclude directly that the simulation was incorrect. For example, the number
of effective dBZ (2 km) falling in the range of 5–17 dBZ with the DPR product is 53, which is
far less than that of simulated reflectivity (the number of effective dBZ (2 km) falling in the
range of 5–17 dBZ), which revealed about 1398–1909, so we hypothesize that the neglect of
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slight precipitation by the DPR retrieval algorithm or the difference between the minimum
detectable signals in the inner and outer swaths (17 dBZ and 5 dBZ) is responsible for the
difference. Nevertheless, the numbers of observed data points within other classes are
nearly the same, and the number of simulated data points is comparable to that of observed
data points (shown in the Supplementary Materials Table S1). In these classes, almost
all simulated reflectivity is also smaller than the observed reflectivity at high altitudes,
while they are equivalent at low altitudes (rainfall grids). This means that the USERS may
underestimate the reflectivity on snow and cloud ice at Ka-band; otherwise, the actual
snowflake shape is not among the eleven shapes assumed by the USERS. No matter what,
when the dBZ (2 km) is large, the simulated reflectivity under the spherical shape or two
complex-shape assumptions (sector and dendrite) shows the same phenomenon of a steep
increase from high altitudes to low altitudes. This similarity indicates that these three
shapes may be close to the real shapes of snowflakes.

Figure 8. Mean Ka-band reflectivity profile of GPM DPR and of simulations under eleven shape

assumptions for the sample of cloud system 2, with given reflectivity at the height of 2 km (dBZ

(2 km)) in ranges of (a) 5–17 dBZ, (b) 17–20 dBZ, (c) 20–23 dBZ, (d) 23–25 dBZ, (e) 25–27 dBZ,

(f) >27 dBZ.

Figure 9 shows that the probability distribution functions (PDFs) of simulated reflec-
tivity shifted to the smaller end comparing to those of GPM-observed reflectivity. This is
due to the limited detection sensitivity of GPM DPR. It illustrates that our guess about
the effect of the DPR retrieval algorithm neglecting slight precipitation, mentioned in the
previous paragraph, is probably right. This conclusion is consistent with that of previous
studies comparing DPR-retrieved snowfall with other satellite or ground-based obser-
vation data [7,40–42]. Beyond that, in the radar reflectivity simulation, under all shape
assumptions, the peak values of PDFs between 20 and 30 dBZ were well displayed; the
sources of these signals were primarily liquid precipitation, which indicated that the USERS
simulation of liquid water was more accurate than that of solid water.

52



Remote Sens. 2023, 15, 1556

Figure 9. Probability distribution functions (PDF) of observed and simulated Ka-band dBZ (2 km)

with eleven shape assumptions for cloud system 2.

In the real atmosphere, solid water cannot exist in just one shape, so a mixture of simple
shapes (here, only short column is used) and complex shapes (dendrite) was considered in
this study. Considering that the snowflakes are primarily of simple shape at high altitude
and are of complex shape at low altitude because of condensation and collision effects
during falling, the percentage of snowflakes in the short column to the total reflectivity (C)
was assumed to be a function of temperature:

C = 100.0 ∗

(

T

40

)2

(3)

Here, T is the temperature (unit: ◦C) from the WRF simulation. However, when T is
lower than −40 ◦C, C is set to 1. Figure 10 shows the cross-section of C along the red line in
Figure 4.

Figure 10. Percentage of snowflakes of short column shape to total reflectivity: C = 100.0 ∗
(

T
40

)2
,

where T is temperature in ◦C, which the contours represent.

Figure 11 shows that the correlation coefficient (R) between the observed and simulated
reflectivity of cloud system 2 under any shape assumption is between 0.310 and 0.42, close
to the correlation coefficient of the WRF-simulated precipitation rate and DPR precipitation
rate product [43]. When comparing R under eleven single-shape assumptions (relative
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to aggregate-shape assumptions), we found that complex-shape assumptions performed
better than any other shape assumption at both Ku-band and Ka-band. The spherical-shape
assumption was acceptable in Ka-band simulation but performed worse at Ku-band than
simple-shape assumptions. When considering the mixed-shape assumption, R was 0.412
in Ka-band, which was slightly higher than that under any simple-shape assumptions
(short column: 0.206, dendrite: 0.411, as the mixed shape is a mixture of short column
and dendrite), and R was 0.358 in Ku-band, which was superior to all simple-shape
assumptions, although slightly lower than two complex-shape assumptions (short column:
0.300, dendrite: 0.357). This is because the bright-band was clearly shown in the Ka-
band reflectivity cross-section when simulated under the mixed-shape assumption (see
Supplementary Materials Figure S3), just like the signal under complex-shape assumptions.
In addition, the reflectivity for each band in the upper atmosphere was closer to the
measured one. Other temperature-dependent functions were tested, including the third,
fourth, fifth, and sixth power functions of temperature, and the best denominators of
temperature (40.0 for the square function), which exhibited the best fitting effects, were
found for each function. However, the correlation coefficients calculated under these
mixed-shape assumptions were similar to those of the square function, only ranging from
0.409 to 0.412 (Ka-band) and from 0.352 to 0.358 (Ku-band).

Figure 11. Correlation coefficient (R) between observed and simulated reflectivity under eleven

shape assumptions for cloud system 2. The red/blue dotted lines represent R at Ka/Ku bands when

simulated reflectivity is determined under the mixed-shape assumption (more simple shapes at

higher altitudes).

In this case, the simulations of reflectivity in both Ka-band and Ku-band were consis-
tent with DPR observations and thus could be used in the following study. In addition,
we found: (1) The snow shape assumption greatly influenced radar reflectivity. (2) The
difference between the simulation of reflectivity and observation was significant when
using simple-shape assumptions; sector and dendrite provided a more reasonable scheme
for studying snow’s real shape and for radiative transfer process calculation. (3) In a real
atmosphere, there were likely to be more snowflakes with simple shapes at the upper
altitude and more with complex shapes at the lower altitude; the mixed-shape assumption
depending on temperature provided a new perspective for studying snowflake shapes.

3.2. The Impact of Shape Assumptions on Z–R Relationships in Three Temperature Ranges

The Z–R relationship is the basis of precipitation retrieval from radar measurements.
The shape assumption has significant impacts on this relationship and thus can lead to
different retrieval bias, which has not previously been quantified. In this section, Z–R
relationship is fitted from the model simulations with multiple shape assumptions and
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compared to selected relationships in literature. In addition, the associated retrieval error
and bias are investigated to evaluate the impacts in different temperature layers.

The relationship between Z in Ku-band and the rain rate (R in mm/h), Z = a·Rb is
often used to calculate R from Z directly in active radar retrieval algorithms [16,19,44].
Marshall and Palmer fitted the parameters a and b using observations [45], but the Z–
R relationship is only for precipitation between 1 and 23 mm/h because of the limited
instrument detection accuracy. Some researchers derived Z–R relationships based on the
Rayleigh assumption [46,47], but that introduces errors into the estimation of reflectivity
since both of the sizes and and the real shapes of snowflakes differ from that under sphere
shape assumption. Therefore, it is necessary to study Z–R relationships for snowflakes
with different shapes. Note that R is the short form for precipitation rate in this study, as
there is also rainfall in this case.

As it is common to use dBZ as the unit of reflectivity (Z) in observation, and because
we wanted to connect reflectivity observation and precipitation directly, hereafter, dBZ
is used:

dBZ = 10lgZ (4)

Moreover, the dBZ–R relationship is fitted:

dBZ = 10lg(Z) = 10lg
(

a·Rb
)

= A + B·lgR, (5)

Here, A and B are two parameters to be fitted. MSE is used for the regression score:

MSE =
∑i

(

dBZi − ˆdBZi

)2

N
(6)

Here, N is the data volume, and the superscript indicates the fitting value. The MSEs
for Ku-band reflectivity of snowflakes with six shapes in three temperature layers are
reported in Table 2. The fitting effects are good for the particles in the atmosphere under
−5 ◦C, as most MSEs are less than 1. However, MSEs for the reflectivity of spherical
snowflakes existing between −40 ◦C and −5 ◦C are relatively high (>5), which results from
the dispersion of the fitted data points and leads to bias that stems from using a fixed
Z–R relationship in the retrieval algorithm. The MSEs are usually high for the particles
existing between −5 ◦C and 0 ◦C because within this region, the scattering properties
vary as precipitation particles tend to exist as a mixture of solid and liquid. Furthermore,
the reflectivity partly results from cloud water, which implies strong effects from the
microphysical properties of cloud water.

Table 2. Mean squared error (MSE) for Ku-band reflectivity of snowflakes with six shapes in three

temperature layers.

Temperature Sphere Short Column Thin Plate 6-Bullet Rosette Sector Dendrite

T ≤ −40 ◦C 0.18 0.04 0.03 0.12 0.03 0.05

−40 < T ≤ −5 ◦C 4.14 0.88 0.74 0.78 0.27 0.28

−5 < T ≤ 0 ◦C 22.72 11.19 12.82 8.07 4.53 4.25

Figure 12 shows dBZ–R relationships for snowflakes with six shapes in three temper-
ature layers, and the fitted parameters are listed in Table 3. The shape assumptions and
temperature stratification clearly affected the fitting results of the dBZ–R relationships, so
it was necessary to consider them in the radar retrieval algorithm.
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Figure 12. Simulated Z–R relationships of snowflakes with six shapes in three temperature layers

(<40 ◦C, from −40 to −5 ◦C, from −5 to 0 ◦C), and the theoretical Z–R relationships (MP and AU

relationships). (a–c) relationships for each temperature layers seperately.

Table 3. Parameters in dBZ–R relationships (dBZ = A + B·lgR) of snowflakes with six shapes in

three temperature layers.

Parameters Temperature/◦C Sphere
Short

Column
Thin Plate

6-Bullet
Rosette

Sector Dendrite

A

T ≤ −40 24.43 24.68 25.96 23.08 21.29 21.05
−40 < T ≤ −5 29.88 26.43 27.33 25.03 22.41 22.07
−5 < T ≤ 0 28.07 24.10 24.76 23.74 21.88 21.60

B

T ≤ −40 14.51 11.95 11.72 13.68 11.84 12.21
−40 < T ≤ −5 11.85 9.61 9.48 10.06 9.74 9.67
−5 < T ≤ 0 11.57 10.21 10.39 10.65 10.27 10.17

Next, we compared the fitted relationships with Z = 190·R1.72 derived by Marshell and
Palmer (hereafter MP relationship, [46]), and Z = 366·R1.42 derived by Atlas and Ulbrich (here-
after AU relationship, [47]), which are dBZ = 22.79 + 17.2·lgR and dBZ = 25.36+ 14.2·lgR
(Figure 12). Below −40 ◦C, dBZ–R relationships of spherical snowfall and small (precipita-
tion) snowfall in simple shapes were close to the theoretical relationships; between −40 ◦C
and −5 ◦C, dBZ–R relationships of snowfall in complex shapes were close to theoretical
relationships; above −5 ◦C, when snowfall was small (<1 mm/h), dBZ–R relationships of
snowflakes in complex shapes were closer to theoretical relationships, but when snowfall
was large (>6 mm/h), dBZ–R relationships of spherical snowflakes were closer. Despite all
this, when theoretical dBZ–R relationships (MP or AU) were used in the retrieval algorithm,
the following deviations arose: (1) The method underestimated snowfall of simple-shaped
snowflakes when R was large and overestimated snowfall of simple-shaped snowflakes
from −40 ◦C to −5 ◦C when R was small. (2) The method significantly underestimated
snowfall of sector/dendrite-shaped snowflakes when R was large (>1 mm/h). (3) As
for snowfall of spherical snowflakes, snowfall from −40 ◦C to −5 ◦C and light snowfalls
(<9 mm/h) above −5 ◦C were significantly overestimated, but large snowfalls (>9 mm/h)
above −5 ◦C were underestimated.

Table 3 shows that for the two shapes, sector and dendrite, that made our reflectivity
simulation the most consistent with the observation in this experiment, the dBZ–R relation-
ships below −40 ◦C were dBZ = 21.29 + 11.84·lgR and dBZ = 21.05 + 12.21·lgR, which
were Z = 134.59·R1.184 (sector) and Z = 127.35·R1.221 (dendrite), respectively.
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3.3. Estimation Error of Cloud Top and Cloud Area

On the one hand, the detection sensitivity of radar affects the detectable three-dimensional
structure of the cloud. On the other hand, the detection capabilities are different for
snowflakes in different shapes, so the estimation of detection error based on the spherical-
shape assumption differs from reality. In this study, the difference of top of cloud (DTOC)
and the difference in area of cloud (DAOC) are two indexes expressing cloud system
detection accuracy. As shown in Figure 13, the real cloud boundary refers to where the
total density of hydrometers equals 0.001 g/m3, and the detectable cloud boundary is
determined according to the radar detection threshold. DTOCi is defined as the differ-
ence between the real cloud top and the detectable cloud top in grid i in the horizontal
direction. DAOCj is defined as the ratio of AOC detection error (the area where precip-
itation exists but is undetectable) and real AOC at height j. In addition, the DTOC and
DAOC are illustrated for DPR deployed on GPM and FY3E, whose minimum detectable
signals are assumed to be 5 dBZ and 10.4 dBZ at Ka-band, and 12 dBZ and 14.0 dBZ at
Ku-band, respectively.

Figure 13. Sketch map of the difference of top of cloud (DTOC) and the difference in area of cloud

(DAOC). Here, i represents a horizontal position, and j represents height. A pixel where the total

density of hydrometers (ρ) is larger than 10−3 g/m3 is considered a precipitation pixel, and pixels

with radar reflectivity higher than the threshold are detectable. TOCtrue,i/TOCdetectable,i is the top of

the cloud that is precipitation/detectable at the position i, and Areatrue,j/Areadetectable,j is the area

of cloud that is precipitation/detectable at the height j; thus, DTOCi = TOCtrue,i − TOCdetectable,i

represents the DTOC at position i, and DAOCj = 1 −
Areadetectable,j

Areatrue,j
represents the DAOC at height j.

Figure 14 shows that the detected TOC and AOC error would be close to zero if
the detection threshold of Ka-band and Ku-band could be limited to −15 dBZ. However,
the real threshold was larger than this value; thus, the DTOCs of DPR for snowflakes in
dendrite shape exceeded 1750 m (Ka, use the minimum detectable signal of the whole
swath hereafter) and 1250 m (Ku), and the DAOCs were about 60% for two bands at the
height of 2 km or 8 km. Moreover, the curves of DAOC variation with detection thresholds
at the height of 8 km were different from those at 2 km, showing a steep increase at ~5 dBZ
(Figure 14c,d). This is because cloud system 1 was a low snowfall cloud whose reflectivity
was always at a low value, so if the detection threshold was higher than ~5 dBZ, the radar
would ignore cloud system 1. In addition, the DTOC of cloud system 2 with snowflakes
of simple shapes was smaller than that with snowflakes of complex shapes (Figure 14a,b),
which further confirmed that the cloud top detected by radar was mainly composed of
simple-shaped snowflakes. Typically, the detection error (DTOC and DAOC) for the cloud
system with spherical snowflakes was lower than for sector or dendrite snowflakes but
higher than for simple particle-shaped snowflakes (short column, thin plate). However, the
previous retrieval algorithm considers the real nonspherical particles as spherical particles,
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which means that it will overestimate the detection ability of solid precipitation with
complex shapes and underestimate the detection ability of solid precipitation with simple
shapes. Under DPR’s detection threshold, the DTOC (DAOC) of complex-shape solid
precipitation was 200–400 m (15%), larger than that of spherical solid precipitation.

Figure 14. Under different shape assumptions, quantitative relationships between DTOC and DAOC

at heights of 2 km/8 km and the radar detection thresholds of Ka-band and Ku-band. (a) Relationship

between DTOC and the threshold of Ku-band, (b) relationship between DTOC and the threshold of

Ka-band, (c) relationship between DAOC and the threshold of Ka-band, and (d) relationship between

DAOC and the threshold of Ku-band. The gray auxiliary lines in (a,c) are thresholds of 12.0 dBZ

(DPR) and 14.0 dBZ (FYPR) in Ku-band, and the gray auxiliary lines in (b,d) are thresholds of 5.0 dBZ

(DPR) and 10.4 dBZ (FYPR) in Ka-band, respectively.

It was easily determined that large DTOC values often appeared at the edge of the
cloud system (Figure 15a,b,e). By comparing the DTOC of Ka-band and Ku-band for DPR
(Figure 15a,b), we found that Ka-band was better than Ku-band at detecting cloud tops,
while for designed thresholds of FYPR, the detection capabilities of these two bands were
similar. However, it should be mentioned that the channels of DPR (13.6 GHz/35.5 GHz)
were slightly different from those of FYPR (13.35/35.55 GHz), and the detection thresholds
of DPR in the actual use stage were lower than in the test stage; thus, the actual detection
capability of FYPR may have been higher than its design value. Furthermore, Figure 15c–f
show that, compared to the dendrite assumption, the spherical-shape assumption often
underestimated DTOC (as we found in Figure 14), but it did not uniformly underestimate
DTOC horizontally. Specifically, it underestimated DTOC in the main part of the cloud
and overestimated DTOC in areas with low water paths. The reflectivity of dendrite
snowflakes is lower than that of spherical snowflakes. Therefore, for cloud system 1, nearly
all the reflectivity was under the threshold, which made it inconsequential in the DTOC
calculation. For cloud system 2, the reflectivity at high altitudes was lower, which made
the DTOC larger.

58



Remote Sens. 2023, 15, 1556

Figure 15. (a–d) Horizontal distribution of DTOC under the dendrite assumption and the difference

of DTOC calculated under the dendrite and spherical-shape assumptions (dDTOC). (a,b) DTOC

under the dendrite assumption for Ku-band and Ka-band, respectively. (c,d) dDAOC for Ku-band

and Ka-band, respectively. (e–h) are the same as (a–d) under the design detection thresholds of FYPR.

The gray part shows the area where PrecipWP > 0.001 g/m2, but no hydrometer has a density greater

than 1−5 g/m3 in the atmospheric column.

4. Discussion

In addition, we hypothesize that the actual detection threshold of DPR may be higher
than 5 dBZ or that the DPR retrieval algorithm ignores small snowfall. In summary, the
shape assumption of snowflakes is very important in the radar radiative transfer process
simulation. Using an inappropriate shape assumption affects the simulation of the Z–R
relationship, thus affecting precipitation retrieval and estimation of detection error.

In this study, to focus on a case study in detail, only one snow case in East China was
used. It remains necessary to conduct simulation research on different regions to develop a
Z–R relationship that can be applied to the active radar retrieval algorithm, in addition to
carefully considering shape assumptions in the vertical stratification.

As suggested by one anonymous reviewer, the mass-weighted diameter, Dm (fourth
over third moment of the distribution), and the particle number concentration in particle
size distribution (PSD) are very important factors affecting the Ku/Ka radar reflectivity
of snow and deserve further in-depth study. It is worth noting that, in this study, we only
focused on the impacts of particle shape assumption. The two parameters just mentioned
were fixed for different shape assumptions. Further studies on the relative importance
of the above three aspects (mass-weighted diameter, particle number concentration, and
particle shape assumption) will be valuable for fully understanding the impacts of particle
microphysical properties on radar reflectivity.

It is challenging to directly compare a storm instantaneously observed using a low-
orbit satellite, such as GPM, to a simulated one, generated by a CRM or MWRT model.
Both simulation errors by the CRM and the radiative transfer calculations may lead to
significant discrepancies. In terms of this study, the horizontal pattern, size, and location of
the simulated storms showed good consistency with the satellite observation (Figure 1). In
the vertical cross-section (Figure 5), the GPM-observed convection cores between 120.70E
and 122.68E were well simulated by the model using dendrite assumption in terms of
location, bright-band, detectable height, etc. Therefore, although there is great uncertainty
in the model, this case is valuable for informing future model sensitivity studies.

Furthermore, the dual-frequency ratio (DFR) is an important parameter when consid-
ering the mixing ratio, particle size, or mass densities.
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5. Conclusions

The combination of WRF and a radiative transfer model such as the USERS is an
effective way to test and verify the radiative transfer model and radar retrieval algorithm.
This study used a precipitation case in East China at 16:30 UTC on 6 January 2018. This
article has discussed the following issues: (1) The effect of shape assumptions (including a
temperature-dependent shape assumption) on the performance of simulations. (2) The asso-
ciated bias in retrieval results when using theoretical Z–R relationships. (3) The detectable
errors of precipitation top height, and the rain area. Here are the main conclusions:

1. Compared with the simple-shape assumptions, our complex-shape assumptions
(sector and dendrite) performed better in both Ka-band and Ku-band reflectivity
simulations. This was shown by the higher correlation coefficients between the
simulated and observed reflectivity and smaller differences between their reflectivity
profiles. Therefore, snowflakes in the real atmosphere might be closer to sector and
dendrite than sphere. The Z–R relationships for these shape assumptions under
−40 ◦C are Z = 134.59·R1.184 (sector) and Z = 127.35·R1.221 (dendrite). However,
snowflakes tend to exist in simple shapes when temperature is low and in complex
shapes when temperature is high. The temperature-dependent assumption performs
well, especially at Ka-band, but the operational method still needs further study.

2. In most conditions, the theoretical Z–R relationships (MP/AU relationships) differed
from the fitted Z–R relationships of snowflakes, regardless of their shape. Furthermore,
the differences led to estimation errors that stemmed from using a theoretical rela-
tionship in the retrieval algorithm. The errors were to underestimate large snowfalls
with simple-shaped snowflakes below −40 ◦C or with complex shapes, and to overes-
timate snowfalls with spherical snowflakes or small snowfalls with simple-shaped
snowflakes below −40 ◦C.

3. Under the existing detection sensitivity, the DTOCs of DPR for this case were 1804.5 m
(Ka) and 1340.8 m (Ku), and the DAOCs reached 50% and 20% at heights of 8 km
and 2 km for Ka-band. If the detection threshold of spaceborne dual frequency radar
could reach 5 dBZ (Ku)/0 dBZ (Ka), its detection capability for snowfall in eastern
China would be greatly improved.

4. An inappropriate shape assumption affected the estimation of detection error: the
DTOC of a complex-shape assumption was 200–400 m larger than that of the spherical-
shape assumption, while the DAOC was ~15% larger.
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Abstract: In the past decade, Saudi Arabia has witnessed a surge in flash floods, resulting in sig-

nificant losses of lives and property. This raises a need for accurate near-real-time precipitation

estimates. Satellite products offer precipitation data with high spatial and temporal resolutions.

Among these, the Precipitation Estimation from Remotely Sensed Information using Artificial Neural

Networks–Dynamic Infrared Rain Rate near-real-time (PDIR-Now) stands out as a novel, global,

and long-term resource. In this study, a rigorous comparative analysis was conducted from 2017 to

2022, contrasting PDIR-Now with rain gauge data. This analysis employs six metrics to assess the

accuracy of PDIR-Now across various daily rainfall rates and four yearly extreme precipitation in-

dices. The findings reveal that PDIR-Now slightly underestimates light precipitation but significantly

underestimates heavy precipitation. Challenges arise in regions characterized by orographic rainfall

patterns in the southwestern area of Saudi Arabia, emphasizing the importance of spatial resolution

and topographical considerations. While PDIR-Now successfully captures annual maximum 1-day

and 5-day precipitation measurements across rain gauge locations, it exhibits limitations in the

length of wet and dry spells. This research highlights the potential of PDIR-Now as a valuable tool

for precipitation estimation, offering valuable insights for hydrological, climatological, and water

resource management studies.

Keywords: PDIR-Now; satellite precipitation products (SPPs); extreme precipitation; Saudi Arabia

1. Introduction

In the last decade, the Kingdom of Saudi Arabia has faced a high number of flash
floods, which resulted in many losses of lives and property. Specifically, more than
13,000 people were impacted by these floods between 1993 and 2013, which occurred
approximately nine times throughout that time period, causing an economic loss of over
20 million USD [1]. Due to the increasing frequency of these flood events, it is crucial to
characterize and forecast them for the purposes of flood control and warning [2–4]. Fur-
thermore, Saudi Arabia also suffers from severe drought, which can have severe impacts
on the water resources of the region [5]. Thus, it is of extreme importance to have access to
accurate precipitation estimates.

Even though there are many factors that impact flooding, precipitation is one of the key
influencing factors, and the accuracy of the precipitation estimates has a substantial impact
on flood predictions and mitigation strategies [4]. Rain gauges effectively and reliably
measure precipitation, but a sparse and uneven gauge network’s lack of representativeness
is a major concern [6–8]. Moreover, a low-density gauge network also makes it difficult to
provide accurate rainfall measurements over a large area [9,10].

Over the past three decades, numerous satellite precipitation products (SPPs) have
been developed as alternative sources of precipitation estimates [11–13]. These SPPs are
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able to provide information about the spatial variability of precipitation, unlike rainfall
gauges, and can be available at fine temporal and spatial resolutions. Hydrological and
climatological studies benefit substantially from SPPs as they are capable of providing
rainfall estimates over areas with few to none monitoring stations [13–15]. Numerous SPPs
with high spatial and temporal resolutions have been produced and are available for free
online [8,15]. Some SPPs include: the Tropical Rainfall Measuring Mission (TRMM) [16]
by the National Aeronautics and Space Administration (NASA), the National Ocenanic
and Atmospheric Administration’s (NOAA) Climate Prediction Center Morphing Tech-
nique (CMORPH) [17], the Climate Hazards Group InfraRed Precipitation with Station
data (CHIRPS) [18] by the Climate Hazards Center at the University of California (UC)
Santa Barbara, Precipitation Estimation from Remotely Sensed Information using Artificial
Neural Networks (PERSIANN) [19], PERSIANN-Cloud Classification System (PERSIANN-
CCS) [20], and PERSIANN- Climate Data Record (PERSIANN-CDR) [21] all by the Center
for Hydrometeorology and Remote Sensing (CHRS) at UC Irvine.

Due to its precise spatial and temporal properties, SPPs have been extensively used
to analyze the life cycle of extreme precipitation events [22]. However, due to retrieval
procedures, indirect measurements, and numerical model parameters, SPPs have errors
and biases [23–25]. As a result, it is vital to analyze and compare the performance of various
SPPs before their implementation [26].

The accuracy of SPPs can also be influenced by the complex interplay between topogra-
phy and precipitation. Mountains and hills can significantly influence precipitation patterns
by directing prevailing winds over their slopes, leading to varied precipitation levels in
different regions. In the context of southwestern Saudi Arabia, the study by Al-Ahmadi
titled “Spatiotemporal variations in rainfall–topographic relationships in southwestern
Saudi Arabia” sheds light on the localized dynamics [27]. The research emphasizes the
importance of local topographic factors, including topography, altitude, slope, proximity to
ridge, and proximity to the Red Sea, in shaping annual and seasonal rainfall. Specifically,
the Asir Mountains emerge as key players, with higher altitudes, more mountainous ar-
eas, steeper slopes, and areas closer to ridges correlating with increased rainfall. Notably,
the concentration of gauge stations along a coastal strip emphasizes the need for more
examination of topography’s influence on precipitation variations. Despite advancements
in precipitation estimation algorithms, the complex terrain in southwestern Saudi Arabia
poses challenges in obtaining reliable quantitative precipitation estimation (QPE), given
the rapid changes in precipitation characteristics due to orographic enhancement. As
we navigate these complexities, continued research and methodological refinements are
crucial for a comprehensive understanding of the relationship between topography and
precipitation in such complex terrains.

Among the various SPPs available, PDIR-Now [28] is one of the most recently used
satellite-based gridded datasets in hydrological models [11,29,30]. It is one of the latest
PERSIANN products developed by the Center for Hydrometeorology and Remote Sensing
(CHRS) at the University of California, Irvine (UCI). PDIR-Now is a quasi-global near-real-
time precipitation product that provides a long record of precipitation estimates, spanning
from the year 2000 to the present at a 0.04° × 0.04° spatial resolution. Precipitation is
better detected by PDIR-Now than by other near-real-time products by the CHRS because
it links brightness temperature and rain rate to remedy errors using climatological data.
PDIR-Now’s high-frequency infrared image sampling allows it to deliver accurate rainfall
estimates quickly after precipitation begins. This algorithm is based on the framework of the
PERSIANN-CCS algorithm but uses dynamical shifting of the cloud-top temperature and
rainfall rate curves using climatology data [28]. Furthermore, the precipitation threshold
was lowered from 273 K to 263 K to improve the detection of warm precipitation.

There has been a limited number of studies analyzing SPPs over Saudi Arabia. Kheimi
and Gutub [31] evaluated TRMM 3B42, CMORPH, Global Satellite Mapping of Precipitation
Microwave-IR Combined Product (GSMap-MVK), and PERSIANN against rain gauges.
The correlation coefficients (CC) of TRMM 3B42, CMORPH, GSMap-MVK, and PER-
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SIANN were 0.44, 0.44, 0.45, and 0.11, respectively. Furthermore, the mean errors (ME) of
TRMM 3B42, CMORPH, GSMap-MVK, and PERSIANN were 0.26 mm/day, 0.62 mm/day,
0.65 mm/day, and 0.30 mm/day. Their probability of detection (POD) was 0.39, 0.52, 0.53,
and 0.24 for TRMM 3B42, CMORPH, GSMap-MVK, and PERSIANN, respectively. This
study concluded that even though all products could detect precipitation accurately, they
overestimated the amount of rainfall over the study area. Mahmoud et al. [32] assessed
the capability of IMERG Early, IMERG Late, and IMERG Final to capture precipitation
over Saudi Arabia using gauge data as the ground truth. The main finding from this study
is that all products exhibit increased accuracy, with the exception of some regions in the
northern part of the study area. Furthermore, they found that the estimates improved
from the Early run to the Final run. Sultana and Nasrollahi [33] evaluated the perfor-
mance of PERSIANN, PERSIANN-CDR, TRMM-RT, TRMM-3B42, and CMORPH over
Saudi Arabia using gauge data as the ground truth. The main conclusion in the study was
that PERSIANN-CDR, TRMM-3B42, and CMORPH performed best over the study area.
Specifically, PERSIANN-CDR, TRMM-3B42, and CMORPH had PODs of 0.322, 0.424, and
0.654 and CCs of 0.171, 0.42, and 0.471. Helmi and Abdelhamed [34] evaluated CMORPH,
PERSIANN-CDR, CHIRPS V2.0, TRMM 3B42 V7, and IMERG V6 against rain gauge data
from 2000 to 2012. This study found that all these products performed best at an altitude of
500–700 m in the central and northern parts of the country and that CMORPH performed
best in their monthly assessment.

Due to the critical need for accurate near-real-time estimates in flood-prone regions and
the product’s capacity to accurately depict the spatial variation of precipitation, evaluating
this product is crucial. Furthermore, this product has never been evaluated over Saudi
Arabia. Thus, the first objective in this study is to evaluate the accuracy of PDIR-Now
using Saudi Arabian daily gauge precipitation data. The second objective is to assess the
capability of the SPP to identify extreme precipitation events. The results of this study can
provide an in-depth understanding of the capabilities of this near-real-time product and
can lead to more informed water management decisions.

2. Materials and Methods

2.1. Study Area

Saudi Arabia is located between 15°N and 35°N and 35°E and 57°E, as shown in
Figure 1. According to the Köppen climate classification system [35,36], the majority of
Saudi Arabia is a hot and arid desert; however, the southwest region of Saudi is considered
semi-arid [37,38]. Precipitation is scant and infrequent in most regions of Saudi Arabia,
with the wet season occurring from October to April [37,39]. During dry months, hardly
any precipitation occurs, with the exception of the southwest area of the country [39,40].

Figure 1. Geographical extent of Saudi Arabia, and distribution of rainfall gauges over the region

of study.
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2.2. Datasets
2.2.1. Rain Gauges

In this study, the daily rain gauge dataset obtained from the Ministry of Environment,
Water, and Agriculture (MEWA) for 130 meteorological observatories across Saudi Arabia
(Figure 1) from 2017 to 2022 is used. To ensure the robustness of our analysis, a data quality
control process was conducted. This involved an inspection of the dataset to identify and
address missing or Not a Number (NaN) values, ensuring consistency throughout the
entire study period.

2.2.2. PERSIANN Dynamic Infrared (PDIR-Now)

PDIR-Now is a near-real-time global high-resolution SPP developed by the University
of California, Irvine’s Center for Hydrometeorology and Remote Sensing (CHRS). The
PDIR-Now algorithm considers several factors beyond brightness temperature to estimate
precipitation intensity. It utilizes a catalog of cloud types that is created by training self-
organizing feature maps (SOFMs) with passive microwave (PMW) data. Then, the rain
rate estimation is based on the brightness temperature, size, and texture features of the
cloud patches at temperatures below 263 K, utilizing the IMERG PMW precipitation dataset
for model training. Furthermore, this algorithm involves the dynamical shifting of cloud-
top brightness temperatures–rain rate (Tb-R) curves using rainfall climatology data. The
spatiotemporal resolution of 0.04° on a monthly basis is employed to adjust the position
of the curves, aiming to correct biases and produce more accurate precipitation estimates.
The adjustment is intended to account for regional variations in wetness, generating more
precipitation in areas with a wetter climatology and vice versa. Compared to other SPPs,
the characteristics of the PDIR-Now algorithm include being a real-time, high-resolution
precipitation product with a short delay time (15 min–1 h) [28]. From 2000 forward, PDIR-
Now offers quasi-global coverage (60°S–60°N) and high spatiotemporal resolution (almost
0.04° and hourly data) precipitation data. The CHRS database of daily PDIR-Now readings
was acquired from the CHRS data portal (http://chrsdata.eng.uci.edu/ (accessed on 1
December 2023) ).

2.3. Methods

Daily satellite precipitation data for each rain gauge were extracted from the nearest
grid point in the satellite-based precipitation products, matching the locations of the rain
gauges used in this study. The evaluation in this study is divided into two categories:
rainfall intensity and extreme rainfall assessments. Statistical metrics were calculated for
PDIR-Now using the gauge data as the ground truth. This method is widely adopted for
assessing the accuracy of SPPs.

2.3.1. Evaluation Metrics

First, six widely used statistical metrics, shown in Table 1, were applied to assess
the accuracy of PDIR-Now across various rainfall rates when compared to the rain gauge
observations, with the goal of better understanding the PDIR-Now performance in terms of
precipitation amount and occurrence. The correlation coefficient (CC), mean bias (MB), and
the root-mean-squared error (RMSE) were used to evaluate the PDIR-Now performance
in estimating the amount of rainfall, whereas the probability of detection (POD), the false
alarm ratio (FAR), and the critical success index (CSI) were used to evaluate the performance
of PDIR-Now in rainfall detection.
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Table 1. Statistical metrics employed to gauge the performance of satellite-based precipita-

tion products.

Index Equation Optimal Value

CC CC =
∑

n
i=1(Ei − Ē)(Oi − Ō)

√

∑
n
i=1(Ei − Ē)2

√

∑
n
i=1(Oi − Ō)2

1

MB MB =
n

∑
i=1

(Ei − Oi)
0

RMSE RMSE =

√

1

n

n

∑
i=1

(Ei − Oi)2 0

POD POD =
TP

TP + FN
1

FAR FAR =
FP

TP + FP
0

CSI CSI =
TP

TP + FP + FN
1

Where Oi represents the reference rain gauge data; Ō represents the mean of the
reference; Ei represents the PDIR-Now estimation; Ē represents the mean of the estimation;
and n refers to the number of samples. In the case of the last three indices, TP represents
the number of precipitation events detected within the rain gauges and PDIR-Now syn-
chronously; FN represents the number of precipitation events observed by rain gauges but
not PDIR-Now; FP refers to the number of precipitation events detected by PDIR-Now that
were not observed by rain gauges. The threshold for defining precipitation occurrence was
0.5 mm/day, as specified by MEWA.

CC quantifies the linear relationship strength between PDIR-Now and the rain gauge
variables. MB and RMSE highlight discrepancies between PDIR-Now and the rain gauge
measurements, with lower values indicating smaller differences. Additionally, POD as-
sesses PDIR-Now’s reliability in detecting precipitation events, FAR measures its tendency
to identify unobserved precipitation, and CSI evaluates its proficiency in recognizing pre-
cipitation events relative to the rain gauge data. To assess PDIR-Now’s capability to detect
precipitation, especially intense precipitation, various rain thresholds were used. Table 2
presents the defined rainfall intensity classes within the scope of the study, along with their
corresponding daily rainfall thresholds.

Given that the study area encompasses arid and semi-arid regions where rainfall is
often minimal or absent, we first calculate the metrics for all precipitation throughout the
study period and then categorize rainfall data into four classes, including “No Rain”, “Light
Rain”, “Moderate Rain”, and “Heavy Rain”. The subjective selection of thresholds is care-
fully considered after analyzing the distribution of the daily data and reviewing different
thresholds and classification standards in similar regions. The “No Rain” category covers
instances of no rain and instances where the rainfall rate is equal to or less than 0.5 mm/day,
implying negligible rainfall. The “Light Rain” category covers instances where the rainfall
rate is between 0.5 and 2 mm/day, implying relatively minimal rainfall. The third category,
“Moderate Rain”, covers a range of rainfall rates between 2 and 10 mm/day, showing a
moderate level of precipitation, and the last category, “Heavy Rain”, is determined by
rainfall rates exceeding 10 mm/day, representing extreme and impactful rainfall events.

Table 2. Rainfall intensity classes defined in the study with their respective daily rainfall thresholds

in mm/day.

Index Equation

No Rain Rainfall Rate ≤ 0.5
Light Rain 0.5 < Rainfall Rate ≤ 2
Moderate Rain 2 < Rainfall Rate ≤10
Heavy Rain Rainfall Rate > 10
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2.3.2. Extreme Precipitation Analysis

The second part of the study consisted of calculating four common standard extreme
precipitation indices to assess PDIR-Now’s performance in capturing extreme precipitation
events using gauge data as the baseline. These indices, shown in Table 3, were defined
by the World Climate Research Programme (WRCP) and have been used all around the
globe [41–43]. The four indices were initially calculated for each year within the 6-year
period at each rain gauge, then at each station, the mean of the annual extreme index values
was computed. Furthermore, the 130 rain gauge stations were classified into three altitude
ranges, specifically: <500 m, 500 m–1000 m, and >1000 m. This was implemented to assess
the performance of PDIR-Now in capturing extremes at different elevations.

Table 3. The four extreme indices selected for this study with their respective definitions and units.

Index Descriptive Name Definition Units

RX1day Maximum 1-day precipitation Annual maximum 1-day rainfall mm

RX5day Maximum 5-day precipitation
Annual maximum consecutive 5-day
rainfall

mm

CWD Consecutive wet days
Annual maximum consecutive rainy
days

days

CDD Consecutive dry days
Annual maximum consecutive dry
days

days

3. Results

3.1. Analysis of Rainfall Estimation Errors

The evaluation of PDIR-Now against the gauge data was performed at a daily scale,
involving the calculation of several metrics, including the CC, MB, RMSE, POD, FAR, and
CSI. To assess the results, the mean of each of the metrics over the study area was calculated
for each rainfall category, and the spatial distribution of the metrics was visually assessed.
The results reveal a CC of 0.33, a MB of 0.07 mm/day, and a RMSE of 3.04 mm/day
(Figure 2). Figure 3 shows the CC, MB, and RMSE results for the three rainfall categories,
“Light Rain”, “Moderate Rain”, and “Heavy Rain”. PDIR-Now exhibits the largest mean
absolute CC in the “Heavy Rain” category, 0.29, whereas the “Moderate Rain” and “Light
Rain” categories had lower mean absolute CCs, 0.17 and 0.16, respectively. This is as
expected given that smaller precipitation rates are more susceptible to errors. The lower
CC values during moderate rainfall events could be linked to the orographic effects of
the prominent mountainous region in Saudi Arabia [27,44]. In arid regions like Saudi
Arabia, the interaction between topography and precipitation is a crucial factor influencing
the spatial distribution of rainfall [39]. Mountains can act as barriers to moist air masses,
leading to orographic lifting on the windward side and subsequently enhancing rainfall
in those areas. Conversely, on the leeward side of the mountains, a rain shadow effect
may occur, resulting in reduced rainfall. PDIR-Now exhibits the lowest MB in the “Light
Rain” category across all areas evaluated, with a mean of 1.14 mm/day. As expected, the
MB increases as the rainfall threshold increases, thus, the “Moderate Rain” and “Heavy
Rain” categories show larger, but negative, MB values with a mean of −1.76 mm/day and
−14.55 mm/day, respectively. The negative sign of the MB results represents that PDIR-
Now underestimates precipitation in the two heavier precipitation categories. Similarly,
the RMSE values in the “Light Rain” category are the lowest compared to the heavier
precipitation categories, with a mean value of 4.45 mm/day. Just as in the case of the MB, the
RMSE increases as the precipitation threshold increases, leading the “Moderate Rain” and
“Heavy Rain” categories to have increasingly higher values, with means of 6.65 mm/day
and 21.88 mm/day, respectively. In the case of the “Light Rain” and “Moderate Rain”
categories, the southwest region of the study area along the coast shows higher RMSE
values, once again, due to the orographic effect over this mountainous area. Finally, the
“Heavy Rain” category does not show one specific area with higher or lower RMSE values
than the rest, and instead, these values vary greatly from one gauge to another.
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Figure 2. Scatter plot of daily PDIR-Now results compared to the rain gauge observation with

statistical indices results. The red line represents the best fit.

Figure 3. Spatial distribution of CC (upper row), MB (middle row), and RMSE (lower row) of daily

PDIR-Now against rain gauge observations for different rain categories with respective mean values.

3.2. Performance Indicator Based on Events

After assessing the results of the rainfall estimation errors, it is necessary to assess the
detection capability of PDIR-Now at different rainfall rate thresholds. The result of the
rainfall detection in Figure 4 shows that PDIR-Now has a POD of 0.73, a FAR of 0.80, and a
CSI of 0.18. While rain gauges along the coast do not achieve high detection performance
compared to inland ones, it is evident that the southwestern coast exhibits lower false
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alarms (first and second columns). This pattern is reflected in the detection accuracy, as
seen in the CSI plot. It is important to note that a threshold of 0.5 mm/day is applied
to differentiate between rain and no rain instances for this calculation. More detailed
results for rainfall categories such as “Light Rain”, “Moderate Rain”, and “Heavy Rain” are
discussed below.

Figure 4. Spatial distribution of POD, FAR, and CSI of daily PDIR-Now against rain gauge observa-

tions in rainfall detection.

Figure 5 offers a nuanced insight into the capacity of the PDIR-Now dataset to ac-
curately capture rain events across different rainfall rate categories. The left column of
this figure exhibits the great capability of PDIR-Now to capture precipitation in the “Light
Rain” category, with mean POD, FAR, and CSI values of 0.47, 0.94, and 0.05, respectively.
PDIR-Now performs similarly in all regions of the study area for this category. The POD of
PDIR-Now is lower, but FAR decreases with higher rainfall rates, as shown by the middle
and right columns of Figure 5. In the case of the “Moderate Rain” category, the POD is
substantially lower than in the “Light Rain” category, with a mean value of 0.20. The mean
FAR and CSI values obtained were 0.85 and 0.09, respectively. These values indicate that
PDIR-Now’s accuracy in detecting moderate precipitation events is higher than in the case
of light precipitation detection. Finally, PDIR-Now’s performance slightly increases when
detecting heavy precipitation events, as shown in the right column of Figure 5. Despite
showing a lower mean POD than in the “Moderate Rain” category, 0.18 specifically, the
FAR decreased, and the CSI increased, with values of 0.75 and 0.11, respectively. This
indicates that PDIR-Now’s detection of events is slightly lower but more accurate for heavy
precipitation events than in the “Moderate Rain” and "Light Rain" categories. The middle
and right columns of Figure 5 also reveal that PDIR-Now is more accurate in the middle
region of Saudi Arabia than along the coast, as was also depicted by the RMSE previously.

An observation made from the detection results of the rain/ no rain analysis is that
the detection is more accurate along the southwestern coast, whereas this is not the case
for the different rainfall categories. The discrepancy can be attributed to the more rigorous
thresholds set for the categories (Table 2). In this analysis, PDIR-Now is required to meet
the criteria for “Light Rain”, “Moderate Rain”, and “Heavy Rain” based on gauge readings,
as opposed to a simpler rain/no rain detection.

3.3. Analysis of Rainfall Extremes and Climatic Patterns

The last part of the study was to assess the capability of PDIR-Now at capturing
extreme precipitation events. Figure 6 provides a comprehensive overview of several critical
climatic and hydrological parameters across all the meteorological stations employed in
this study. The top panel shows the results for the mean of the annual maximum daily
precipitation amount (RX1day) in mm. The results depict that the RX1day index is similarly
captured by PDIR-Now for most of the rainfall gauges, with some minor underestimation.
This similitude accompanied by underestimation can be confirmed by the leftmost panel of
Figure 7, which shows a high mean CC of 0.50 but a mean bias of −2.83 mm. The mean of
the annual maximum five consecutive day precipitation amount, or RX5day index, exhibits
similar results, indicating a slight underestimation by PDIR-Now. In regards to the RX5day,
the CC and RMSE were 0.53 and −3.10 mm, respectively. The results displayed on the
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top panels of Figure 6 and the leftmost panels of Figure 7 indicate that the precipitation
distribution of PDIR-Now across gauge locations is in agreement with the precipitation
amount captured by the rainfall gauge network.

Figure 5. Spatial distribution of POD (upper row), FAR (middle row), and CSI (lower row) of daily

PDIR-Now against rain gauge observations for different rain categories with respective mean values.

Figure 6. Extreme precipitation indices (RX1day, RX5day, CDD, and CWD) of PDIR-Now and rain

gauge data at observed gauge stations.
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In regards to the final two indices, PDIR-Now exhibits an underestimation of the CDD
and an overestimation of CWD. This indicates that PDIR-Now captures longer wet spells
and shorter dry spells than the rainfall gauges do. Figure 7 supports this by showing a large
negative bias in the CDD, −74.25 days, and a positive mean bias in the CWD of 4.22 days.
The difference in the values of the bias in the CDD and CWD corresponds to the fact that
wet spells are usually a lot shorter than dry spells, especially in arid and semi-arid regions
such as Saudi Arabia.

Figure 7. Scatter plots of PDIR-Now and rain gauge data for RX1day, RX5day, CDD, and CWD

indices at different elevation thresholds with statistics of mean CC, MB, and RMSE.

Figure 8 illustrates the spatial pattern of extreme indices derived from both gauge
data and PDIR-Now. The figure reveals that PDIR-Now demonstrates a similar spatial
distribution in the RX1day and RX5day indices compared to the gauge data. However,
the accurate representation of the spatial distribution of dry and wet spell durations is
not achieved by PDIR-Now, as evident in the four rightmost panels of Figure 8. This
observation aligns with expectations, given the superior performance demonstrated by
PDIR-Now in the RX1day and RX5day indices, as depicted in Figure 6.

Figure 8. Spatial distribution of extreme precipitation indices (RX1day, RX5day, CDD, and CWD) of

PDIR-Now and rain gauge data at observed gauge stations.

In addition, 130 rain gauge stations were classified into different altitude ranges:
<500 m, 500–1000 m, and >1000 m. This categorization is employed to assess the perfor-
mance of PDIR-Now across RX1day, RX5day, CWD, and CDD indices, considering various
topographies. Stations below 500 m are represented by the color red, those between 500 m
and 1000 m by blue, and those above 1000 m by green in Figure 7. A comprehensive statis-
tical evaluation of PDIR-Now in comparison to the rain gauge data for RX1day, RX5day,
CDD, and CWD indices across various topographies is presented in Table 4. The higher CC
and lower RMSE and MB observed for stations with elevations <500 m and between 500 m
to 1000 m confirm that PDIR-Now exhibits greater accuracy at elevations below 1000 m. As
the altitude increases and the orographic effect of the southwestern mountain range comes
into play, PDIR-Now exhibits poor performance above 1000 m, with a low CC of 0.18 for
RX1day and 0.17 for RX5day, along with higher RMSE and MB compared to the stations
below 1000 m.
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Table 4. Performance of PDIR-Now compared to the rain gauge for RX1day, RX5day, CDD, and CWD

indices across different elevation thresholds.

RX1day (mm) RX5day (mm) CDD (Days) CWD (Days)

Elevation < 500 m

CC 0.60 0.60 0.58 0.57
RMSE 20.05 28.76 85.91 5.08
MB −2.89 −3.98 −75.53 4.30

500–1000 m

CC 0.64 0.66 0.76 0.42
RMSE 21.56 25.51 98.97 4.86
MB −2.23 −1.62 −84.72 4.05

>1000 m

CC 0.18 0.17 0.53 0.42
RMSE 24.31 32.23 70.24 5.28
MB −3.58 −4.24 −60.73 4.38

4. Discussion

In this study, an evaluation of PDIR-Now’s performance was conducted, specifically
focusing on its comparison against ground-based rain gauges. This analysis is implemented
in the context of various geographical regions across Saudi Arabia, allowing for insights
into the national effectiveness of PDIR-Now.

There are noticeable patterns of overestimation and underestimation within PDIR-
Now’s rainfall estimations, particularly in connection to various rainfall rate categories.
These patterns highlight the challenges faced by satellite-based precipitation products
when estimating precipitation across a wide range of rainfall rates. It is crucial to carefully
examine the topographical and geological variations within the research area. Factors
such as topography, altitude, orographic effects, localized wind patterns, and microclimatic
differences significantly affect the accuracy of remote sensing-based precipitation estimation
products [45–47]. The algorithms employed in satellite-based precipitation products not
only add an extra layer of complexity but also demonstrate their sensitivity to climatic
conditions and precipitation event features [46,48].

There are several factors that can affect the accuracy of satellite precipitation products
when evaluated against gauge data, such as orographic precipitation, spatial and temporal
matching, and algorithm characteristics. Orographic precipitation usually falls into the
category of warm precipitation, given that orographic lift is not conducive to producing
frozen hydrometeors [49]. Moreover, warm precipitation is described as rainfall that occurs
when there are no frozen hydrometeors present and the cloud-top temperature is above
273 K. IR-based algorithms, such as PDIR-Now, use a cloud-top temperature threshold that
is then related to precipitation rate. Thus, if the cloud-top temperature is higher than the
threshold, the precipitation will be underestimated by the product. The results of this paper
confirm the limitation of IR algorithms in areas where orographic precipitation is present,
as the accuracy of PDIR-Now diminished in areas prone to this type of precipitation. In
terms of geospatial and temporal matching, each PDIR-Now pixel of 0.04° × 0.04° is aligned
with the corresponding rain gauge data point based on their coordinates. This can cause
differences between the products, because a point measurement is compared to an estimate
of an area of approximately 16 km2. Additionally, the daily PDIR-Now, aggregated from
half-hourly estimates, is synchronized with the daily readings from the rain gauge [28].
Systematic and aggregation errors during these processes could also contribute to the
divergence between PDIR-Now and the rain gauges.

Furthermore, the length and quality of the accessible data are important in determining
efficiency indicators in this study. The study’s 6-year duration enables an evaluation of
PDIR-Now’s ability to accurately represent rainfall intensities compared to rain gauge data.
Nevertheless, it is important to acknowledge the limitations of the existing ground truth
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dataset with an uneven distribution of rain gauges across the region. Given the limited
availability of observation data, this research is fundamentally comparative over a 6-year
study period and should not be considered a conclusive basis for assessing the overall
performance of PDIR-Now. A more thorough evaluation using over two decades of rainfall
data is recommended.

As mentioned in the introduction, the past studies have assessed other SPPs over
the country. However, the results between those studies and this one are not comparable.
In each of these studies, the assessed periods are different. In the case of this study, the
period between 2017 through 2022 is being assessed, whereas in other studies, such as
Helmi and Abdelhamed [34], the period from 2000 to 2012 was used. Furthermore, in
Kheimi and Gutub [31], January 2003 through November 2010 was utilized. Furthermore,
in the past literature, there has not been a study that only assesses near-real-time products,
which is the only type of product that PDIR-Now could be objectively compared to, due to
the difference in purpose of near-real-time products and climate data records. Mahmoud
et al. [32] assessed IMERG Early, NASA’s near-real-time product, but the length of the
study period, October 2015 to April 2016, does not match this study’s. Additionally, the
rain gauge network is different. Thus, the results from this study cannot be objectively
compared to past studies.

This application of PDIR-Now is a good starting point for the assessment of this SPP
over the study area. However, there is still plenty of space for improvement, particularly in
arid and semiarid regions. An appropriate technique for future developments is minimiz-
ing the existing biases in PDIR-Now. This may be accomplished by using topographical
data, considering other climatic features, and applying machine learning techniques [46,50].
It is essential to assess the accuracy of satellite products, such as PDIR-Now, and detect
any hidden biases through comprehensive evaluations across different spatial and tempo-
ral scales. More validation findings for remote sensing precipitation products will hold
significance and offer benefits across a wide range of applications, including hydrology,
agriculture, and water management.

5. Conclusions

This study was the first one of its kind to test the capabilities of the latest near-real-
time satellite product by the CHRS, PDIR-Now, over Saudi Arabia. This analysis involved
a thorough approach of matching gauge-station coordinates with satellite precipitation
coordinates, which enabled the evaluation of the SPP. By evaluating PDIR-Now against
the rain gauge data, the study aimed to discern the product’s strengths and limitations.
The evaluation can be separated into two sections. First, six well-established statistical
metrics were employed to assess the accuracy of PDIR-Now to detect rainfall events and
their precipitation amounts at a daily scale. The metrics utilized to assess the accuracy
of PDIR-Now in capturing precipitation amounts were the CC, the MB, and the RMSE,
whereas the metrics for assessing the correctness of the rainfall detection were the POD,
FAR, and CSI. Moreover, four annual extreme precipitation indices were used to analyze
the capability of PDIR-Now when capturing extreme precipitation events. The extreme
precipitation indices included in the study were RX1day, RX5day, CDD, and CWD.

Accurate estimates of precipitation are extremely valuable in arid and semi-arid
areas. All of the tools used to measure or estimate precipitation have advantages and
disadvantages. Even though the fine spatial and temporal resolutions of satellite products
are a great advantage, these products also have limitations. SPP evaluations are essential
and have great implications in assessing the validity of SPPs over Saudi Arabia. This is
because given that these products can provide information about the spatial distribution
of precipitation, they are very often used in studies related to hydrology and climatology.
Thus, assessing their reliability is crucial. Additionally, having accurate near-real-time
estimates of precipitation over the study area, including spatial distribution information,
is key for water budget studies, thus, directly affecting water resources management.
Furthermore, having a product that accurately depicts extreme events is useful for post-
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disaster assessment, enabling prompt response in mitigating the impacts of these heavy
precipitation events.

This analysis provided a depiction of PDIR-Now’s performance over Saudi Arabia.
PDIR-Now showed the ability to capture precipitation with a low MB of 0.07 mm/day
and a CC of 0.33. In the case of the detection of precipitation, PDIR-Now showed a better
capability in the southwestern part of the study area. In the categories analysis, PDIR-Now
performed best in the detection of “Heavy Rain”. Even though PDIR-Now shows higher
POD in the “Light Rain” category, the accuracy of the detection is the best in the “Heavy
Rain” category, shown by a higher CSI and lower FAR. Furthermore, PDIR-Now slightly
overestimates “Light Rain” but underestimates “Moderate Rain” and “Heavy Rain”. The
error in the different categories is more prone to occur in areas affected by orographic
precipitation, specifically the southwest of the country. In this region, the ability of PDIR-
Now to capture small-scale, orographically induced rainfall events diminished, highlighting
the importance of spatial resolution and topographical considerations. Additionally, PDIR-
Now similarly captured the RX1day and RX5day precipitation amounts throughout the
gauge locations with only a slight underestimation. On the other hand, the CDD was
underestimated compared to the rainfall gauges, and the CWD was overestimated. This
reveals that PDIR-Now captures shorter dry spells and longer wet spells than the rain
gauge network. Concerning different topographies, PDIR-Now shows greater accuracy
at elevations below 1000m, indicated by higher CC and lower RMSE and MB. However,
its performance declines above 1000m due to the orographic effect of the southwestern
mountain range, leading to much lower CC values (0.18 for RX1day and 0.17 for RX5day)
and increased RMSE and MB compared to stations at lower altitudes.

In conclusion, this manuscript provides insight on the ability of PDIR-Now to pro-
vide accurate near-real-time precipitation estimates. It underscores the complexities and
challenges inherent to remote sensing-based precipitation products while highlighting
their potential in diverse applications. The study’s insights pave the way for ongoing
research, seeking to harness the full potential of satellite-based precipitation estimation
for improved hydrological and climatological studies, water resource management, and
disaster preparedness over Saudi Arabia.
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The following abbreviations are used in this manuscript:

CC Correlation coefficient
CDD Consecutive dry days
CHIRPS Climate Hazards Group InfraRed Precipitation with Station
CHRS Center for Hydrometeorology and Remote Sensing
CMORPH Climate Prediction Center Morphing Technique
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CSI Critical success index
CWD Consecutive wet days
FAR False alarm ratio
GSMap-MVK Global Satellite Mapping of Precipitation Microwave-IR Combined Product
IMERG Integrated Multi-satellitE Retrievals for Global Precipitation Measurement
MB Mean bias
MEWA Ministry of Environment, Water, and Agriculture

PERSIANN
Precipitation Estimation from Remotely Sensed Information using Artificial
Neural Networks

PDIR-Now PERSIANN–Dynamic Infrared near-real-time
PERSIANN-CCS PERSIANN–Cloud Classification System
PERSIANN-CDR PERSIANN–Climate Data Record
POD Probability of detection
RMSE Root-mean-squared error
SPP Satellite precipitation product
Tb-R Cloud-top brightness temperatures–rain rate
TRMM Tropical Rainfall Measuring Mission
WRCP World Climate Research Programme
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Abstract: In this study, we devised a constraint method, called multi-model ensemble pattern (MEP),

to estimate the refractive index structure parameter (C2
n) profiles based on observational data and

multiple existing models. We verified this approach against radiosonde data from field campaigns

in China’s eastern and northern coastal areas. Multi-dimensional statistical evaluations for the C2
n

profiles and integrated astronomical parameters have proved MEP’s relatively reliable performance in

estimating optical turbulence in the atmosphere. The correlation coefficients of MEP and measurement

overall C2
n in two areas are up to 0.65 and 0.76. A much higher correlation can be found for a single

radiosonde profile. Meanwhile, the difference evaluation of integrated astronomical parameters also

shows its relatively robust performance compared to a single model. The prowess of this reliable

approach allows us to carry out regional investigation on optical turbulence features with routine

meteorological data soon.

Keywords: optical turbulence; refractive index structure parameter; vertical profile; radiosonde; routine

meteorological parameters; multi-model ensemble pattern; integrated astronomical parameters

1. Introduction

Optical turbulence (OT), caused by atmospheric inhomogeneities and fluctuations,
is one of the most critical factors that limit the transmission and performance of imaging
systems [1]. Researchers involved in light propagation in the atmosphere, especially
laser physicists and astronomers, have been concerned with this issue for decades [2–11].
A turbulent atmosphere impacts light wave propagation in various aspects, such as phase
changes and intensity fluctuations. These distortions lead to significant blurring, scin-
tillations, broadening, arrival angle fluctuations, and laser beam wander [1,2,8]. Hence,
parameterization and characterization of OT are essential for designing and operating
photoelectric systems.

Among all the parameters assessing the influence on optoelectronic systems from the
turbulent atmosphere, the refractive index structure parameter (C2

n) is commonly used to
characterize the optical turbulence in the atmosphere. The past decades have witnessed
researchers’ efforts to measure, parameterize, and estimate C2

n. Up to now, different tech-
niques (direct or indirect) using optical or non-optical principles have developed to obtain
C2

n [12]. Among these techniques, a pair of micro-thermometers (MT) is the most common
equipment used to obtain C2

n by invoking several hypotheses [1]. Utilizing a balloon-borne
MT (in situ measurements), usually accompanied by measurements of routine meteoro-
logical parameters, is extensively employed for getting the C2

n profile in photoelectric
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applications, for example, site testing [6,13,14] and astronomical observatories routine
scheduling [3,15]. Other remote sensing methods and instruments, for example, Multi-
Aperture Scintillation Sensor (MASS), Slope Detection And Ranging (Slodar) and Solar
Differential Image Motion Monitor+ (S-Dimm+), are also of vital importance for the devel-
opment of modeling and the refinement of empirical dependencies for astronomy [16–20].

Meanwhile, methods parameterizing and estimating C2
n profiles are established to meet

the need of engineering practices. Empirical, physically-based, statistical, and data-driven
learning methods to estimate C2

n were subsequently developed. Simple empirical methods,
such as the submarine laser communication (SLC) model [21], are only involved in a single
elevation parameter. Physically-based models referring to thermodynamics or dynamics
factors exist in lots of literature. Owing to their abundant physical connotations, these
models are competitive in characterizing OT in terms of its physical mechanism. Hufnagel
developed the Hufnagel model based on meteorology and stellar scintillation data [22]. The
Hufnagel-Valley5/7 (HV5/7) model [22,23] is one of the most popular forms related to wind
velocity in the free atmosphere. Ruggiero and DeBenedictis proposed the Hmnsp99 outer
scale model, referring to gradients of temperature and wind shear [24]. Dewan developed
a similar turbulence outer scale method utilizing wind shear [25]. Thorpe investigated the
relationship between potential temperature inversion and the Thorpe scale; Basu proposed
a simple approach to estimate C2

n profiles with the coarse-resolution potential temperature
profiles [21,26]. The Ellison scale was developed to quantify the scales of water body
overturns. This theory was also used to calculate C2

n [27,28]. Recently, several modified
models, such as the wind shear and potential temperature (WSPT) model [29] and wind
shear and temperature gradient (WSTG) model [30], were also applied to estimate C2

n
profiles under different experimental environments. Other methods were developed in a
statistical view, for example, statistical models devised by Vanzandt [31] and Trinquet [32].
Along with the development of computer science, deep learning tools have shown their
advantage in handling high-dimensional and nonlinear issues. Researchers also applied
this useful tool in estimating C2

n [33–35].
However, no one of the existing estimating approaches are superior to any of the

others, to the best of our knowledge. Each existing approach has its own merits and
limitations [21]. The universality and robustness of most existing approaches and models
should be improved. However, the turbulent atmosphere with random, nonlinear, and
infinite-element features makes it difficult to completely specify the precise mathematical
expression of C2

n from the routine macroscopic meteorological parameters—for now, at least.
The existing physical-based approaches were established on several hypotheses and sta-
tistical evidence, more or less. Here, we propose a multi-model ensemble pattern (MEP)
method to estimate C2

n based on several existing physically-based methods. The purpose
of this study is to take advantage of different existing approaches. The proposed model
performance is not always the best. However, it can ensure that the C2

n and integrated
astronomical parameters estimated by the MEP are competitive compared to the best of the
existing models if it is not.

This paper is organized as follows: Section 2 describes the experimental site, instru-
ments, and radiosonde data. Section 3 presents the theory of several existing approaches
to estimate C2

n that we adopted and the proposed MEP method. Section 4.1 depicts the
results of C2

n using different models. Section 4.2 exhibits the evaluation of different models
in calculating integrated astronomical parameters. The summary and conclusions are given
in Section 5.

2. Experimental Principles and Scientific Data

2.1. Experimental Principles

According to the Gladstone law [12,36] and neglecting the water vapor concentration
contribution, the refractive index structure parameter C2

n (m−2/3) can be computed via
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pressure P (hPa), absolute temperature T (K), and temperature structure parameter C2
T

(K2m−2/3) as follows:

C2
n =

(

79 × 10−6 P
T2

)2

C2
T . (1)

C2
T can be calculated by the temperature structure function D2

T based on the Kolmogorov–
Obukhov turbulence assumption [1]. D2

T is defined as:

DT(r) =
〈

[T(�x)− T(�x +�r)]2
〉

= C2
Tr2/3(l0 ≪ r ≪ L0), (2)

where triangle brackets denote an ensemble average; �x and �x +�r are the positions of the
temperature probes; l0 and L0 represent the inner and outer scales, respectively; and r
represents the distance of two probes that should be in the inertial sub-region. Radiosonde
balloons equipped with micro-thermometers (MT) and routine meteorological sensors are
used worldwide to obtain optical turbulence and meteorology parameters profiles.

In our case, the temperature probes (red rectangular boxes) used are shown in
Figure 1b. The two platinum probes were isolated 1 m (r = 1 m) horizontally. T and
P data necessary for calculating C2

n were measured by onboard temperature and pressure
sensors. A Global Positioning System (GPS) was used to obtain the position information,
and wind velocity was calculated from GPS data with a precision of 0.3 m/s. The Anhui
Institute of Optics and Fine Mechanics (AIOFM) designed the whole system. The instru-
ments’ performance was summarized in Ref. [37]. The platinum wire probe resistance was
10 Ω with 10 µm diameter. The minimum detectable value of C2

T was 4.0 × 10−6 K2m−2/3.
The sampling frequency of the processor was up to 100 Hz, and the data were averaged
with a time interval of 1 s. The precision of the temperature and pressure sensors were
0.2 K and 1.5 hPa. The balloons ascend with a vertical velocity of approximately 5 m/s.
The data were re-processed with a space interval of 10 m.

Figure 1. Field observation areas and instrument. (a) Sites locations: the eastern coastal area of China

(ECACN) and the northern coastal area of China (NCACN). (b) Instrument: platinum wire probes

(red rectangular boxes).

2.2. Scientific Data

The field observations were carried on two areas (Figure 1a) during April 2018. One
observation was undertaken in the eastern coastal area of China (hereinafter ECACN),
and the other in the northern coastal area of China (hereinafter NCACN). After removing
several incomplete datasets with low termination altitude or missing data, we chose 16
and 20 profiles of ECACN and NCACN, respectively. The data collections of two areas are
summarized in Table 1. More details are documented in Appendix B Tables A1 and A2.
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Table 1. Radiosonde data collection of two areas.

Areas Morning Launches Evening Launches Total Launches

ECACN 0 16 16
NCACN 9 11 20

3. Methodology of MEP

3.1. Theory of the Adopted Models

Seven different approaches (HV: Hufnagel-Valley 5/7; H9: Hmnsp99; DN: Dewan; TE:
Thorpe; EN: Ellison; WT: WSPT; WG: WSTG) estimating C2

n with routine meteorological
parameters were adopted in our study. We have summarized theories of these approaches
in Appendix A to avoid interrupting the fluency of this article. More details can be found
in the corresponding literature.

In data processing, all approaches except for HV involved gradient variables (the
measured meteorological parameters or their derived parameters). Several approaches
(TE, EN, and WT) calculated C2

n related to the sizes of localized overturns of the potential
temperature. It was hard to distinguish these overturns for coarse resolution data because
potential temperature profiles have an increasing tendency with height most of the time.
Hence, we adopted the original resolution data in these approaches. Meanwhile, the other
approaches (H9, DN, and WSTG) were calculated in the vertical resolution of 60 m. All
seven approach estimations were re-processed on the scale of 60 m for consistency and
convenience. Meanwhile, data exceeding 1 km above the ground level (AGL) were se-
lected. Hence, the feature of C2

n and integrated astronomical parameters represent the free
atmosphere results in our case.

3.2. MEP Method

Before introducing the principles of MEP, several theoretical basics should be elab-
orated first. For two variables, r and f , rn is the reference variable (MT measured C2

n
in this study), and fn is the corresponding pattern result (estimated as C2

n in this study).
The correlation coefficient (R) and their root-mean-square difference between two fields
(E′, also known as the centered root-mean-square difference) are defined as:

R =

1
N

N
∑

n=1

(

fn − f̄
)

(rn − r̄)

σf σr
, (3)

E′ =

{

1

N

N

∑
n=1

[(

fn − f̄
)

− (rn − r̄)
]2

}1/2

, (4)

where σr (σr = 1/N

√

N
∑

n=1
(rn − r̄)2) and σf (σf = 1/N

√

N
∑

n=1

(

fn − f̄
)2

) denote the reference

variable standard deviation and pattern result standard deviation, respectively; r̄ and f̄
represent the average of two variables. Thus, we can deduce the relationship between the
reference standard deviation σr, pattern standard deviation σf , and correlation coefficient
R as:

E′2 = σf
2 + σr

2 − 2σf σrR, (5)

Taylor devised the Taylor diagram to provide a concise statistical summary of how
well the patterns match each other in terms of the above four statistics (σr, σf , R and E′) [38].

In our study, we have normalized the statistics (σ̂f = σf /σr, σ̂r = 1, Ê′ = E′/σr) referring
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to σr for convenience. According to Taylor’s work, a skill function was also developed to
assess the models’ performance as follows:

S(α, β) =
2α(1 + R)β

(

σ̂f + 1/σ̂f

)α
(1 + R0)

β
, (6)

where R0 represents the maximum of R in a set of the same model and we set R0 = 1; α
and β are penalty coefficients that can adjust the proportion of skill function via model
variance and correlation coefficient. A more considerable value of α or β means that the
corresponding statistic (σ̂ or R) has a more significant influence on the result of S(α, β).

Further, a weight function is defined as:

Wj(γ) =
Sj

γ

N
∑

i=1
Si

γ

. (7)

Note that all skill values are in the range of 0–1. We set a penalty parameter γ to dis-
tinguish the model’s performance. Consequently, the multi-model ensemble pattern (MEP)
method process is divided into three steps, as shown in Figure 2. We have summarized
them as follows:

1. Using routine meteorological parameters estimating C2
n with multiple models;

2. Obtaining models skills S(α, β) against MT results in Equation (6);
3. Calculating weights Wj(γ) of different models and MEP results.

Meanwhile, parameters (α, β) are used for modulating the weights of different statistics,
and γ is used to distinguish the different models’ performance. These penalty parameters
can be changed as the research focus changes in practice. For example, we can increase
the α value to increase the weight of data fluctuation in the evaluation system. It is the
same for the β for correlations, and we chose the latter condition in our case. Moreover,
a considerable γ means a more significant influence on the evaluation of skills. In our case,
we set α = 2, β = 6, γ = 4.

Figure 2. Process of MEP. Abbreviation meanings are as follows after this. MT: micro-thermal; HV:

Hufnagel-Valley 5/7; H9: Hmnsp99; DN: Dewan; TE: Thorpe; EN: Ellison; WT: WSPT; WG: WSTG;

MEP or ME: multi-model ensemble pattern method.
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3.3. Statistical Analysis

In addition to the correlation coefficient (R), the root mean square error (RMSE), bias
(Bias), and mean absolute error (MAE) were calculated to evaluate the performance of the
different approaches. The definitions of these statistics are as follows:

RMSE =

√

√

√

√

1

N

N

∑
n=1

(rn − fn)
2, (8)

Bias =
1

N

N

∑
n=1

(rn − fn), (9)

MAE =
1

N

N

∑
n=1

|rn − fn|. (10)

4. Results and Discussion

4.1. Measured and Estimated C2
n Profiles

We employed 16 and 20 radiosonde datasets of two areas when evaluating the per-
formance of the proposed and adopted methods. We used log10(C2

n) instead of C2
n to

generate readable data and curves. We provide two C2
n profiles of all approaches against

the MT of each dataset in the primary text. See Appendix B for all days details in two sites
(Figures A1–A3 in ECACN; Figures A4–A7 in NCACN).

Figure 3a,b displays MT and estimations C2
n profiles from the ECACN radiosonde

campaign. The overall trends of estimations are consistent with MT. The C2
n magnitude of

estimations and MT are mainly distributed in the range of 10−15 − 10−19m−2/3. Distinct
differences can also be seen between different estimations. HV has a very high correlation
with MT within the troposphere. However, it underestimates C2

n significantly above
approximately 20 km, which indicates that a more turbulent and complex atmospheric state
might exist above the troposphere in this area. TE, EN, and WT have better performance
in magnitude owing to the calibration of unknown proportionality constants according
to MT measurements. H9, DN, and WG have a similar trend in the overall trend, while
these estimations fluctuate a little bit more around the mean value against TE, EN, WT, and
ME. By combining the corresponding Taylor diagrams in Figure 3c,d, we can also easily
find that the values of normalized standard deviations of HV, H9, DE, and WG are much
bigger than MT most of the time. Meanwhile, closer normalized standard deviation values
to 1 (or MT) of TE, EN, and ME means that these approaches have similar behavior in C2

n
fluctuation magnitude. In addition, ME also shows its advantage in correlation evaluation.
Among all 16 launches, correlation coefficients between ME and MT are mainly distributed
around 0.6–0.8 and the best one is up to approximately 0.9.

Figures A1–A3 in Appendix B display all the C2
n profiles in ECACN. Scatter figures

of all approaches against MT for all launches were plotted to further study the overall
statistical features. Figure 4 shows all launches estimated C2

n statistical feature in ECACN.
The relevant statistics are summarized in Table 2. Although the overall Bias of ME is slightly
larger than WT, R, MAE and RMSE of ME present the best performance of all approaches.

Table 2. ECACN 16 C2
n profiles statistics.

Statistics HV H9 DN TE EN WT WG ME

R 0.64 0.61 0.53 0.60 0.63 0.53 0.60 0.65
Bias 0.60 0.57 0.08 −0.30 0.18 −0.005 −0.15 −0.11

MAE 0.81 0.73 0.76 0.56 0.53 0.54 0.64 0.51
RMSE 1.13 0.92 0.95 0.70 0.67 0.68 0.81 0.64
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Figure 3. Measured and estimated C2
n profiles in ECACN. (a,b): single day C2

n profiles; (c,d): corre-

sponding Taylor diagram of a single day C2
n statistics. The black solid curves in circles mark MT and

models normalized standard deviation σ̂; the blue dashed lines mark the correlation coefficient R; the

red dashed lines mark the root-mean-square difference E′ between the models and MT. Intuitively,

the closer the model is to the reference (MT, the black circle solid point) in the diagram, the better the

estimation is.

Validation was also done to the radiosonde data from the campaign carried out in
NCACN. Twenty sounding datasets were selected in this area. Figure 5 exhibits two
launches C2

n profiles and their corresponding Taylor diagrams. The characteristics of
different approaches estimation profiles are similar to those in ECACN. MEP correlation
coefficients of a single launch in NCACN are mainly distributed around 0.7–0.9, and the
best one is more than 0.95. Figures A4–A7 in Appendix B display all the C2

n profiles in
NCACN. Figure 6 shows all 20 launches estimated C2

n against the MT statistical feature in
NCACN. The relevant statistics are summarized in Table 3. The overall correlation criteria
R of MEP is the best of all approaches, up to 0.7632. Meanwhile, the deviation criteria
Bias, MAE, and RMSE of MEP are the smallest. The above results of all the approaches
in ECACN and NCACN have proved the potential of MEP in estimating C2

n utilizing
radiosonde data.

Table 3. NCACN 20 C2
n profiles statistics.

Statistics HV H9 DN TE EN WT WG ME

R 0.69 0.72 0.62 0.74 0.75 0.64 0.73 0.76
Bias 0.52 0.61 0.06 −0.22 0.26 0.02 −0.13 −0.09

MAE 0.74 0.71 0.73 0.49 0.49 0.52 0.56 0.45
RMSE 1.01 0.89 0.90 0.62 0.64 0.66 0.69 0.58
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Figure 4. ECACN all launches MT vs. estimations C2
n scatter diagrams. (a): MT vs. Hafnagel-Valley

5/7; (b) MT vs. Hmnsp99; (c): MT vs. Dewan; (d): MT vs. Thorpe; (e): MT vs. Ellison; (f): MT vs.

WSPT; (g): MT vs. WSTG; (h): MT vs. MEP. The color indicates the frequency distribution of C2
n.
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Figure 5. Measured and estimated C2
n profiles in NCACN. (a,b) A single day C2

n profiles; (c,d) corre-

sponding Taylor diagram of a single day C2
n statistics.
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Figure 6. NCACN all launches MT vs. estimations C2
n scatter diagram. (a–h) The same as Figure 4

but for NCACN.

4.2. Integrated Astronomical Parameters from Measured and Estimated C2
n Profiles

Evaluating the optical turbulence influence on optoelectronic facilities (ground-based
observatories, laser transmission, and free atmosphere optical communication systems)
in the atmosphere is one of the primary aims of researchers. Hence, we also calculated
the integrated astronomical parameters (Fried parameter r0, seeing ǫ, isoplanatic angle
θAO and scintillation rate σ2

I ) to evaluate the performance of the proposed method. These
parameters are defined as [5,9,12]:

r0 =

⎡

⎣0.423

(

2π

λ

)2

sec ϕ

∞
∫

h0

C2
n(h)dh

⎤

⎦

−3/5

, (11)

88



Remote Sens. 2023, 15, 1584

ε = 5.25λ−1/5

⎡

⎣

∞
∫

h0

C2
n(h)dh

⎤

⎦

3/5

, (12)

θAO = 0.057λ6/5

⎡

⎣

∞
∫

h0

C2
n(h)h

5/3dh

⎤

⎦

−3/5

, (13)

σ2
I = 19.12λ−7/6

∞
∫

h0

C2
n(h)h

5/6dh. (14)

ϕ is the solar zenith angle set as 0◦; λ is a given wavelength (we set λ = 550 nm); h denotes
the elevation above ground level (AGL) of the sites; h0 represents the initial elevation (we
set h0 = 1000 m). Therefore, the conclusions of the integrated astronomical parameters
included in this study can only represent the influence of the free atmosphere.

Details of these integrated astronomical parameters of all launches in ECACN are
listed in the Appendix B, Tables A3–A6. The median values represent regional features and
are of referential value for photoelectric applications. Median values of r0, ǫ, θAO, and σ2

I
calculated from MT are 10.10 cm, 1.10′′, 0.67′′, and 0.54′′, respectively. These parameters
calculated from ME are 8.93 cm, 1.25′′, 0.73′′, and 0.56′′. The relative errors of median
values are rather small. All the integrated astronomical parameters are depicted in Figure 7,
and the relevant statistical feature of these parameters are summarized in Table 4. HV and
DN overestimated r0 and θAO and underestimated ǫ and σ2

I can be easily found both from
the figures and their Bias from the table against MT. The ME correlation coefficients of
R0, ǫ and σ2

I are quite good. Meanwhile, the deviations are rather small compared to the
other approaches.

Table 4. ECACN integrated astronomical parameters statistics (@λ = 550 nm).

Statistics HV H9 DN TE EN WT WG ME

R 0.46 0.32 0.70 0.61 0.46 0.62 0.46 0.69
r0 Bias −4.07 6.50 −8.87 4.56 −1.23 0.005 5.17 3.13

MAE 5.01 6.60 8.87 4.89 4.17 3.27 5.31 4.01
RMSE 6.11 8.13 9.86 6.48 4.79 4.28 7.17 5.32

R 0.14 0.34 0.53 0.53 0.44 0.65 0.40 0.51
ǫ Bias 0.39 −1.14 0.57 −0.45 0.15 0.15 −0.56 −0.20

MAE 0.42 1.17 0.57 0.54 0.39 0.29 0.60 0.38
RMSE 0.58 1.37 0.70 0.58 0.52 0.39 0.69 0.42

R 0.45 −0.42 0.56 0.49 0.45 0.29 0.03 0.38
θAO Bias −0.59 0.35 −0.95 0.21 −0.28 0.05 0.21 0.08

MAE 0.66 0.43 0.97 0.30 0.41 0.28 0.31 0.28
RMSE 0.74 0.59 1.03 0.45 0.47 0.40 0.47 0.40

R 0.14 −0.08 0.51 0.72 0.62 0.40 0.31 0.50
σ2

I Bias 0.37 −0.87 0.47 −0.21 0.25 0.14 −0.28 −0.004
MAE 0.38 1.01 0.47 0.33 0.29 0.27 0.40 0.28

RMSE 0.53 1.18 0.60 0.37 0.39 0.38 0.46 0.34
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Figure 7. ECACN integrated astronomical parameters (@λ = 550 nm). (a) Fried parameter r0 (in cm);

(b) seeing ǫ (arcsec in ′′); (c) isoplanatic angle θAO (arcsec in ′′); (d) scintillation rate σ2
I ; (e–h):

corresponding scatter diagram.

The same computation process was done for the 20 radiosonde data from NCACN.
The parameters calculated in NCACN are listed in the Appendix B, Tables A7–A10. Median
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values of r0, ǫ, θAO, and σ2
I calculated from MT are 10.31 cm. 1.08′′, 0.63′′, and 0.66′′, re-

spectively. The parameters calculated from ME are 8.83 cm, 1.26′′, 0.72′′, and 0.58′′. All the
integrated astronomical parameters are portrayed in Figure 8, and the relevant statistical
feature of these parameters are summarized in Table 5. The features of these parameters’
statistics are similar to the results in ECACN. The ME correlation coefficients of all parame-
ters are even better in general compared to ECACN. Meanwhile, the deviation statistics are
relatively small overall compared to the other approaches. A comprehensive comparison in
two experimental areas between MT and the best estimations of all the parameter statistics
were summarized in Table 6. Although MEP is not always the best estimation among these
eight approaches, its gap with the optimal approach is minimal. All the above show MEP’s
considerable universality in studying optical turbulence characteristics.

Table 5. NCACN integrated astronomical parameters statistics (@λ = 550 nm).

Statistics HV H9 DN TE EN WT WG ME

R −0.22 0.51 −0.006 0.64 0.59 0.40 0.42 0.60
r0 Bias −4.68 5.90 −9.75 2.46 −3.90 −1.42 4.11 1.74

MAE 6.28 5.98 9.75 4.04 4.19 3.69 4.86 3.63
RMSE 7.61 7.17 10.89 4.87 5.37 4.44 6.03 4.27

R −0.16 0.62 0.12 0.58 0.64 0.24 0.53 0.58
ǫ Bias 0.63 −1.32 0.84 −0.007 0.58 0.43 −0.37 0.08

MAE 0.72 1.40 0.84 0.60 0.60 0.57 0.76 0.55
RMSE 1.09 1.60 1.20 0.80 0.95 0.94 0.88 0.75

R 0.01 0.03 −0.03 0.38 0.47 0.32 0.20 0.45
θAO Bias −0.56 0.36 −1.07 0.11 −0.41 0.01 0.16 0.03

MAE 0.67 0.41 1.07 0.29 0.43 0.29 0.29 0.29
RMSE 0.85 0.52 1.13 0.36 0.51 0.33 0.38 0.32

R −0.07 0.81 −0.05 0.31 0.39 0.11 0.24 0.59
σ2

I Bias 0.69 −1.24 0.84 0.26 0.69 0.48 0.02 0.34
MAE 0.76 1.31 0.84 0.64 0.69 0.64 0.69 0.60

RMSE 1.36 1.54 1.42 1.16 1.31 1.24 1.13 1.11

Table 6. Performance of MEP/ME against the best one (within parentheses) (the integrated astro-

nomical parameters were calculated for the wavelength of light at λ = 550 nm. The values retain two

decimal places).

Areas Parameters R Bias MAE RMSE

C2
n 0.65(0.65:ME) −0.11(−0.005:WT) 0.51(0.51:ME) 0.64(0.64:ME)

r0 0.69(0.70:DN) 3.13(0.005:WT) 4.01(3.27:WT) 5.32(4.28:WT)
ECACN ǫ 0.51(0.65:WT) −0.20(0.15:EN) 0.38(0.29:WT) 0.42(0.39:WT)

θAO 0.38(0.56:DN) 0.08(0.05:WT) 0.28(0.28:WT) 0.40(0.40:ME)
σ2

I 0.50(0.72:TE) −0.004(−0.004:ME) 0.28(0.27:WT) 0.34(0.34:ME)

C2
n 0.76(0.76:ME) −0.09(0.02:WT) 0.45(0.45:ME) 0.58(0.58:ME)

r0 0.60(0.64:TE) 1.74(−1.42:WT) 3.63(3.63:ME) 4.27(4.27:ME)
NCACN ǫ 0.58(0.64:EN) 0.08(−0.007:TE) 0.55(0.55:ME) 0.75(0.75:ME)

θAO 0.45(0.47:EN) 0.03(0.01:WT) 0.29(0.29:ME) 0.32(0.32:ME)
σ2

I 0.59(0.59:ME) 0.34(0.02:WG) 0.60(0.60:ME) 1.11(1.11:ME)
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Figure 8. NCACN integrated astronomical parameters (@λ = 550 nm). (a) Fried parameter r0;

(b) seeing ǫ; (c) isoplanatic angle θAO; (d) scintillation rate σ2
I ; (e–h): corresponding scatter diagram.

5. Conclusions

In this study we propose a multi-model ensemble pattern method to estimate the
C2

n based on several existing physical-based approaches. Balloon radiosonde data were
collected in two areas of China to validate this method. Multiple dimensions evaluation
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including C2
n and the integrated astronomical parameters (r0, ǫ, θAO and σ2

I ) of all ap-
proaches were done against the MT measured results. Statistical analysis of these methods’
performance mainly focuses on the overall trend (R) and deviation (Bias, MAE, and RMSE).
The best performance of all approaches against the MEP is summarized in Table 6. The C2

n
correlation coefficients of MEP are up to 0.65 and 0.76. The overall agreements of the
C2

n profiles in two areas are quite good. A single profile has an even higher correlation
coefficient of more than 0.95. Several statistical assessments of deviations of C2

n are rela-
tively small. These indicate that MEP has the capacity to estimate C2

n well. Meanwhile,
the evaluations of integrated astronomical parameters also show its promising potential for
calculating these parameters as C2

n does. Although MEP was not always the best method in
all parameters statistical evaluations, it showed competitive performance in these evalu-
ations. Hence, the MEP method presented good stability and universality, and even the
validation radiosonde data were collected in different areas, which meant significantly
different atmospheric conditions. The MEP appreciably contains more information than a
single method, including thermodynamic and dynamic factors of the optical turbulence.
Moreover, the MEP method could be less sensitive to different parametric settings caused
by each method, producing a more robust C2

n estimate.
It should be noted that a single approach performed relatively well after well-designing

the relevant parameters according to field radiosonde measurement in previous
practice [21,28–30]. However, the designed parameters might be less effective for other sites.
This weakness makes a single model challenging to extend without sufficient prior data.
Reliable and universal methods estimating C2

n from routine meteorological parameters are
critical to evaluate the optical turbulence influence on adaptive optics systems. The most
obvious example is a forecasting study in which the astronomer can not obtain optical
turbulence in advance directly. Generally, researchers can forecast C2

n via weather forecast-
ing models, combining different estimating approaches [8,12,39,40]. In addition, it also
provides us with an applicable method to study regional optical turbulence characteristics
from historical meteorological data. To be certain, more validation work should be done up
until that point.
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Abbreviations

The following abbreviations are used in this manuscript:

MEP or ME Multi-model Ensemble Pattern

OT Optical Turbulence

MT Micro-thermometers

SLC Submarine Laser Communication

ECACN Eastern coastal area of China

NCACN Northern coastal area of China

MASS Multi-Aperture Scintillation Sensor

Slodar Slope Detection And Ranging

S-Dimm+ Solar Differential Image Motion Monitor+

GPS Global Positioning System

AGL Above the ground level

HV5/7 or HV Hufnagel-Valley5/7 Model

H9 Hmnsp99 Model

DN Dewan Model

TE Thorpe Model

EN Ellison Model

WT WSPT Model

WG WSTG Model

AIOFM Anhui Institute of Optics and Fine Mechanics

Appendix A. Theories of Adopted Approaches

Appendix A provides theories of adopted approaches estimating C2
n. We place the

contents of Section 3.1 (primary manuscript) in this appendix document to avoid inter-
rupting the fluency of the original article. In Section 3 (primary manuscript), we introduce
several adopted physical-based approaches to estimate C2

n. Theories of these approaches
are briefly summarized below in the appendix document. For more details, one may refer
to the corresponding literature. We roughly classify these approaches into three types.
The first type is the semi-physical and semi-statistical approach. The typical approach is the
Hufnagel model. The second type focuses on the calculation of the turbulence outer scale.
We adopted the Hmnsp99, Dewan, and wind shear and temperature gradient (WSTG)
models. The third type estimates C2

n via the temperature structure parameter. The Thorpe,
Ellison, and wind shear and potential temperature (WSPT) models are examples.

Appendix A.1. Hufnagel-Valley 5/7 Model

The Hufnagel-Valley model was developed based on the statics of radio sounding
and stellar scintillation [22,23]. The most commonly used form is the Hufnagel-Valley 5/7
model related to wind speed. The calculated formula is expressed as:

C2
n(h) = 8.2 × 10−26Wh10e−h + 2.7 × 10−16e−h/1.5 + Ae−h/0.1, (A1)

where e is the Euler number; h (unit: m) is the height above the ground. In our case,

the parameters A = 1.7 × 10−4 and W = (1/15)
20
∫

5

V2(h)dh, where V is the wind speed

(unit: m/s) between 5 and 20 km.

Appendix A.2. The Outer-Scale Method

Other approaches (Hmnsp99, Dewan, WSTG) estimating C2
n are based on the outer

scale according to the work by Tatarskii [1]:

C2
n = 2.8L4/3

0 M2, (A2)
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where L0 is the turbulence outer scale and M is the vertical gradient of the potential
refractive index. The value of M2 can be calculated from the temperature (T in K) and
pressure (P in hPa) profiles as below:

M2 =

[

−79 × 10−6P
T2

(

dθ

dh

)

]2

, (A3)

where θ (unit: K) is the potential temperature defined as θ = T(1000/P)0.286. Hence,
the key to the C2

n estimation becomes the calculation of the outer scale. Most methods
that parameterize the outer scale or turbulence with macroscopic quantities rely not only
on the existing theoretical basis of turbulence but also on the statistics of large amounts
of experiment and numerical simulation data and physical intuition and perspicacity of
the founders of these models. The adopted approaches in our study calculating L0 are
listed below.

Appendix A.2.1. Hmnsp99 Model

The Hmnsp99 model defines L0 with wind shear (S) and temperature gradients
(dT/dh) [24]. The expressions are different in the troposphere and stratosphere as

L0
4/3 =

{

0.14/3 × 100.362+16.728S−192.347 dT
dh , Troposphere

0.14/3 × 100.757+13.819S−57.784 dT
dh , Stratosphere

(A4)

where S =
√

(du/dh)2 + (dv/dh)2 (hereinafter), u and v are the north and east horizontal
wind components, respectively.

Appendix A.2.2. Dewan Model

Dewan model deduces L0 from only one parameter (wind shear) [25]. Meanwhile,
it is similar to the Hmnsp99 model, which has a different form in the troposphere and
stratosphere:

L0
4/3 =

{

0.14/3 × 101.64+42S, Troposphere
0.14/3 × 100.506+50S.Stratosphere

(A5)

Appendix A.2.3. WSTG Model

The WSTG model is a modified model that comes from Hmnsp99. The calculation of
the outer scale is related to the dynamic and thermodynamic state of the atmosphere [30].
The expression is as follows:

L0
4/3 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0.14/3 × 100.835−37.464S−306.034 dT
dh , S < 0.016 ∩ dT/dh < 0

0.14/3 × 100.825+66.9S−52.783 dT
dh , S < 0.016 ∩ dT/dh > 0

0.14/3 × 100.715+52.907S−102.515 dT
dh , S > 0.016 ∩ dT/dh < 0

0.14/3 × 102.215−9.882S−101.666 dT
dh , S > 0.016 ∩ dT/dh > 0

(A6)

Appendix A.3. The Temperature Structure Parameter Method

The remaining approaches (Thorpe, Ellison, WSPT) deduce C2
n from the Gladstone

relationship [12] as follows:

C2
n =

(

79 × 10−6 P
T2

)2

C2
T , (A7)
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and the temperature structure parameter (C2
T) expressed as:

C2
T = c0L4/3

0

(

∂θ̄

∂h

)2

. (A8)

c0 is a constant that should be determined by experiment. c1, c2, and c3 are also unknown
proportionality constants determined by experiment data in the following Equations (A9),
(A11), and (A13).

Appendix A.3.1. Thorpe Model

The Thorpe model quantifies C2
T with the Thorpe scale (LT) and sorted potential

temperature gradients (∂θs/∂h) [26] as follows:

C2
T = c1L4/3

T

(

∂θs

∂h

)2

, (A9)

LT =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

√

∣

∣

∣
horiginal − hsorted

∣

∣

∣

or
∣

∣

∣
horiginal − hsorted

∣

∣

∣

. (A10)

θs(hereinafter) is the sorted potential temperature rearranged in ascending order; horiginal
and hsorted are the corresponding heights of the original potential temperature and sorted po-
tential temperature, respectively. In our case, we chose the latter formula of Equation (A10)
to calculate LT .

Appendix A.3.2. Ellison Model

Ellison proposed the Ellison scale, which refers to density or potential temperature,
to study the overturning of fluid caused by turbulences [27,28]. The calculation formula is
as follows:

C2
T = c2L4/3

E

(

∂θs

∂h

)2

, (A11)

LE =

∣

∣

∣

∣

∆θ

∂θs/∂h

∣

∣

∣

∣

. (A12)

LE is the Ellison scale; ∆θ (hereinafter) represents the difference value of the original and
sorted (ascending) potential temperature.

Appendix A.3.3. WSPT Model

The WSPT model involves both the wind speed and potential temperature information,
calculating C2

T [29] as follows:

C2
T = c3L4/3

W

(

∂θs

∂h

)2

, (A13)

LW =

√

|∆θ|

∂θs/∂h
·
(uv

S2

)1/2
. (A14)

Appendix B. Details of Two Areas Radiosonde, Models Estimations, and Integrated

Astronomical Parameters Results

This Appendix B provides the details of two areas radiosonde, models estimations,
and integrated astronomical parameters results. Variables, symbols, and abbreviations
used in this document have the same meanings as the primary manuscript.
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Appendix B.1. Radiosonde Details

Appendix B.1.1. ECACN

Radiosonde details of the eastern coastal area of China (ECACN) are included in
Table A1.

Table A1. ECACN radiosonde details (BJT: Beijing time).

Site
Flight

Number
Date

Release
Time

Flight
Duration

Termination
Altitude

(BJT) /s (AGL)/m

1 5 Apirl 2018 19:30 5010 29,020
2 9 Apirl 2018 19:30 5027 31,210
3 10 Apirl 2018 19:30 4767 30,410
4 11 Apirl 2018 19:30 4788 27,880
5 12 Apirl 2018 19:30 5014 29,810
6 15 Apirl 2018 19:30 4088 25,740
7 17 Apirl 2018 19:30 4355 26,410
8 18 Apirl 2018 19:30 4686 28,150

ECACN 9 19 Apirl 2018 19:30 5037 30,120
10 20 Apirl 2018 19:30 5371 31,620
11 22 Apirl 2018 19:30 4820 28,220
12 24 Apirl 2018 19:30 5176 30,710
13 25 Apirl 2018 19:30 5051 30,910
14 26 Apirl 2018 19:30 5088 29,410
15 27 Apirl 2018 19:30 5443 31,750
16 28 Apirl 2018 19:30 5144 31,170

Appendix B.1.2. NCACN

Radiosonde details of the northern coastal area of China (NCACN) are included in
Table A2.

Table A2. NCACN radiosonde details.

Site
Flight

Number
Date

Release
Time

Flight
Duration

Termination
Altitude

(BJT) /s (AGL)/m

1 3 Apirl 2018 19:30 4464 28,660
2 4 Apirl 2018 7:30 4210 27,970
3 4 Apirl 2018 19:30 4747 29,460
4 5 Apirl 2018 7:30 4808 29,320
5 8 Apirl 2018 19:30 4271 27,370
6 9 Apirl 2018 7:30 4855 28,880
7 9 Apirl 2018 19:30 4780 29,660
8 10 Apirl 2018 19:30 5275 29,780
9 12 Apirl 2018 7:30 4591 27,810
10 13 Apirl 2018 7:30 4633 28,710

NCACN 11 14 Apirl 2018 19:30 5069 29,680
12 16 Apirl 2018 7:30 5360 29,380
13 16 Apirl 2018 19:30 5292 30,050
14 17 Apirl 2018 7:30 5176 28,850
15 20 Apirl 2018 7:30 5155 29,660
16 21 Apirl 2018 19:30 4853 29,400
17 25 Apirl 2018 19:30 5012 30,750
18 26 Apirl 2018 7:30 4714 28,790
19 26 Apirl 2018 19:30 4901 30,660
20 27 Apirl 2018 19:30 4798 28,530
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Appendix B.2. The Refractive Index Structure Parameter of MT and Estimations

Appendix B.2.1. ECACN MT and Models Estimations

The refractive structure index parameter profiles of MT and estimations in ECACN
are exhibited in Figures A1–A3.

Flight number :1  MT vs. MODELS

MT

HV5/7

Hmnsp99

Dewan
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Ellision

WSPT

WSTG

MEP

(a) Flight number: 1.

Flight number :2  MT vs. MODELS

MT
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Ellision

WSPT

WSTG

MEP

(b) Flight number: 2.

Flight number :3  MT vs. MODELS
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WSTG
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(c) Flight number: 3.

Flight number :4  MT vs. MODELS
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WSPT

WSTG
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(d) Flight number: 4.

Figure A1. The refractive index structure parameter profiles of MT and estimations in ECACN:

Figure A1 sub-figures (a–d) are flight numbers 1–4 in Table A1.
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Flight number :5  MT vs. MODELS
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(b) Flight number: 6.

Flight number :7  MT vs. MODELS

MT

HV5/7

Hmnsp99

Dewan

Thorpe

Ellision

WSPT

WSTG

MEP

(c) Flight number: 7.

Flight number :8  MT vs. MODELS

MT

HV5/7

Hmnsp99

Dewan

Thorpe

Ellision

WSPT

WSTG

MEP
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(e) Flight number: 9.
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(f) Flight number: 10.

Figure A2. The refractive index structure parameter profiles of MT and estimations in ECACN:

Figure A2 sub-figures (a–f) are flight numbers 5–10 in Table A1.
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(f) Flight number: 16.

Figure A3. The refractive index structure parameter profiles of MT and estimations in ECACN:

Figure A3 sub-figures (a–f) are flight numbers 11–16 in Table A1.
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Appendix B.2.2. NCACN MT and Models Estimations

The refractive structure index parameter profiles of MT and estimations in NCACN
are exhibited in Figures A4–A7.
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(d) Flight number: 4.

Figure A4. The refractive index structure parameter profiles of MT and estimations in NCACN:

Figure A4 sub-figures (a–d) are flight numbers 1–4 in Table A2.
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(f) Flight number: 10.

Figure A5. The refractive index structure parameter profiles of MT and estimations in NCACN:

Figure A5 sub-figures (a–f) are flight numbers 5–10 in Table A2.
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(f) Flight number: 16.

Figure A6. The refractive index structure parameter profiles of MT and estimations in NCACN:

Figure A6 sub-figures (a–f) are flight numbers 11–16 in Table A1.
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(d) Flight number: 20.

Figure A7. The refractive index structure parameter profiles of MT and estimations in NCACN:

Figure A7 sub-figures (a–d) are flight numbers 17–20 in Table A2.

Appendix B.3. The Integrated Astronomical Parameters

Appendix B.3.1. ECACN Integrated Astronomical Parameters Details

The integrated astronomical parameters details calculated from radiosonde and model
results in ECACN are included in Tables A3–A6.

Table A3. ECACN integrated astronomical parameters details (r0 @λ = 550 nm).

Flight Method
Parameter Number MT HV H9 DN TE EN WT WG ME

1 6.45 15.41 5.95 19.31 4.25 4.08 10.48 5.92 5.30
2 13.15 14.38 6.52 21.05 7.33 11.32 11.79 6.67 9.05
3 21.22 16.91 4.80 22.64 8.72 15.68 12.40 6.98 10.10
4 10.47 17.37 4.51 20.13 8.13 15.24 12.73 5.64 7.78

r0/cm 5 5.63 18.97 6.43 20.46 7.50 13.76 10.94 6.34 9.34
6 9.72 12.37 3.77 20.69 7.05 13.10 9.98 6.33 9.03
7 10.63 12.53 4.51 20.72 7.28 14.47 11.04 6.64 7.56
8 8.66 15.11 4.57 21.32 7.64 14.30 12.02 7.14 9.65
9 15.61 19.53 5.68 21.35 7.69 14.93 16.86 6.92 9.21

10 23.28 20.11 6.23 23.69 8.21 15.39 14.21 7.22 11.84
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Table A3. Cont.

Flight Method
Parameter Number MT HV H9 DN TE EN WT WG ME

11 18.69 19.12 7.52 21.14 8.01 14.69 12.23 7.03 9.71
12 6.43 16.28 2.31 20.37 7.21 14.47 9.76 6.78 8.82
13 9.19 15.40 4.08 22.02 7.38 14.27 9.58 6.82 8.06

r0/cm 14 8.12 14.94 7.06 18.54 6.05 6.97 11.01 7.19 7.47
15 12.90 13.44 6.36 19.82 7.41 14.82 12.43 6.70 8.66
16 9.72 13.12 5.57 18.49 7.11 12.14 12.34 6.78 8.27

Median 10.10 15.41 5.63 20.70 7.39 14.38 11.91 6.78 8.93
Mean 11.87 15.94 5.37 20.73 7.31 13.10 11.86 6.69 8.74

Table A4. ECACN integrated astronomical parameters details (ǫ @λ = 550 nm).

Flight Method
Parameter Number MT HV H9 DN TE EN WT WG ME

1 1.72 0.72 1.87 0.58 2.61 2.73 1.06 1.88 2.10
2 0.85 0.77 1.71 0.53 1.52 0.98 0.94 1.67 1.23
3 0.52 0.66 2.32 0.49 1.28 0.71 0.90 1.59 1.10
4 1.06 0.64 2.47 0.55 1.37 0.73 0.87 1.97 1.43
5 1.97 0.59 1.73 0.54 1.48 0.81 1.02 1.75 1.19
6 1.14 0.90 2.95 0.54 1.58 0.85 1.11 1.76 1.23
7 1.05 0.89 2.47 0.54 1.53 0.77 1.01 1.67 1.47
8 1.28 0.74 2.43 0.52 1.46 0.78 0.92 1.56 1.15
9 0.71 0.57 1.96 0.52 1.45 0.74 0.66 1.61 1.21

ǫ/′′ 10 0.48 0.55 1.79 0.47 1.35 0.72 0.78 1.54 0.94
11 0.59 0.58 1.48 0.53 1.39 0.76 0.91 1.58 1.15
12 1.73 0.68 4.81 0.55 1.54 0.77 1.14 1.64 1.26
13 1.21 0.72 2.72 0.50 1.51 0.78 1.16 1.63 1.38
14 1.37 0.74 1.57 0.60 1.84 1.59 1.01 1.55 1.49
15 0.86 0.83 1.75 0.56 1.50 0.75 0.89 1.66 1.28
16 1.14 0.85 1.99 0.60 1.56 0.92 0.90 1.64 1.34

Median 1.10 0.72 1.98 0.54 1.50 0.77 0.93 1.64 1.25
Mean 1.11 0.71 2.25 0.54 1.56 0.96 0.96 1.67 1.31

Table A5. ECACN integrated astronomical parameters details (θAO @λ = 550 nm).

Flight Method
Parameter Number MT HV H9 DN TE EN WT WG ME

1 0.33 1.23 0.69 1.69 0.57 0.99 0.84 0.57 0.69
2 0.78 1.09 0.47 1.79 0.57 1.13 0.68 0.60 0.74
3 2.01 1.47 0.31 1.89 0.62 1.20 0.70 0.58 0.77
4 0.83 1.55 0.28 1.77 0.60 1.14 0.70 0.55 0.68
5 0.52 1.91 0.42 1.74 0.59 1.02 0.64 0.55 0.73
6 0.57 0.87 0.38 1.76 0.60 1.08 0.68 0.56 0.73
7 0.85 0.88 0.31 1.67 0.60 1.18 0.74 0.55 0.54
8 0.69 1.18 0.39 1.75 0.58 1.16 0.71 0.61 0.77
9 1.36 2.07 0.46 1.77 0.58 1.16 1.00 0.61 0.75

θAO/′′ 10 1.13 2.27 0.46 1.90 0.60 1.16 0.88 0.60 0.91
11 1.10 1.95 0.47 1.77 0.59 1.12 0.76 0.60 0.73
12 0.47 1.36 0.32 1.75 0.61 1.17 0.68 0.63 0.80
13 0.46 1.23 0.47 1.86 0.59 1.14 0.67 0.63 0.66
14 0.40 1.16 0.68 1.58 0.48 0.53 0.74 0.59 0.58
15 0.65 0.98 0.61 1.73 0.58 1.15 0.83 0.62 0.71
16 0.60 0.94 0.49 1.60 0.57 0.97 0.74 0.56 0.66

Median 0.67 1.23 0.46 1.76 0.59 1.14 0.72 0.60 0.73
Mean 0.80 1.38 0.45 1.75 0.58 1.08 0.75 0.59 0.72
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Table A6. ECACN integrated astronomical parameters details (σ2
I @λ = 550 nm).

Flight Method
Parameter Number MT HV H9 DN TE EN WT WG ME

1 1.54 0.24 0.76 0.15 1.10 0.75 0.41 0.99 0.81
2 0.40 0.28 1.04 0.13 0.80 0.30 0.49 0.87 0.54
3 0.10 0.19 2.02 0.12 0.66 0.24 0.47 0.85 0.49
4 0.44 0.17 2.44 0.14 0.73 0.26 0.46 1.03 0.67
5 1.03 0.13 1.22 0.14 0.78 0.31 0.56 0.97 0.55
6 0.63 0.40 1.95 0.14 0.82 0.31 0.57 0.95 0.58
7 0.37 0.39 2.10 0.14 0.79 0.26 0.49 0.95 0.86
8 0.61 0.25 1.61 0.14 0.78 0.26 0.49 0.82 0.51
9 0.21 0.12 1.12 0.13 0.77 0.26 0.27 0.82 0.54

σ2
I 10 0.18 0.11 1.08 0.12 0.72 0.25 0.34 0.82 0.38

11 0.22 0.13 0.99 0.14 0.75 0.27 0.44 0.84 0.54
12 1.01 0.21 3.18 0.14 0.78 0.26 0.57 0.82 0.52
13 0.82 0.24 1.44 0.12 0.78 0.27 0.58 0.81 0.66
14 1.02 0.26 0.72 0.17 1.18 1.05 0.49 0.84 0.85
15 0.47 0.33 0.87 0.14 0.82 0.26 0.40 0.84 0.60
16 0.63 0.35 1.16 0.16 0.84 0.37 0.46 0.92 0.67

Median 0.54 0.24 1.19 0.14 0.78 0.26 0.48 0.85 0.56
Mean 0.61 0.24 1.48 0.14 0.82 0.35 0.47 0.88 0.61

Appendix B.3.2. NCACN Integrated Astronomical Parameters Details

The integrated astronomical parameters details calculated from radiosonde and model
results in NCACN are included in Tables A7–A10.

Table A7. NCACN integrated astronomical parameters details (r0 @λ = 550 nm).

Flight Method
Parameter Number MT HV H9 DN TE EN WT WG ME

1 2.95 17.18 3.74 19.16 6.84 8.21 12.00 5.21 7.12
2 8.63 14.05 3.57 20.75 7.36 13.01 10.20 6.15 8.27
3 9.04 14.56 3.85 21.19 7.50 14.53 10.75 6.64 8.16
4 5.67 13.40 2.67 20.68 6.90 8.99 9.81 5.77 7.40
5 4.93 12.47 3.96 17.86 7.79 15.88 8.42 6.19 8.03
6 15.11 13.97 4.86 18.12 7.82 14.03 9.47 5.81 8.84
7 7.19 15.95 5.82 18.41 7.76 16.78 10.38 6.20 5.66
8 19.46 10.79 3.86 19.55 9.41 17.60 15.12 6.57 10.77
9 9.86 10.72 4.16 20.76 8.94 15.73 10.18 6.40 10.73

r0 10 3.32 14.17 1.61 20.21 7.85 13.02 11.18 6.46 6.27
11 13.17 11.67 3.99 19.27 7.60 14.78 9.66 6.57 7.11
12 15.67 15.55 5.16 17.36 7.84 15.65 12.09 5.93 9.40
13 13.35 18.65 6.17 20.62 8.16 16.50 14.61 6.91 9.29
14 7.06 18.80 4.77 20.02 7.42 11.02 13.74 6.24 8.79
15 10.77 21.23 4.92 21.43 8.19 12.19 12.68 6.11 9.73
16 12.67 20.45 3.74 24.38 8.56 14.97 14.64 6.84 8.83
17 16.23 13.34 6.61 20.65 8.50 16.84 12.93 6.82 9.93
18 13.03 13.83 6.00 21.46 8.35 14.32 12.10 6.31 10.11
19 15.06 13.40 6.60 20.38 8.86 16.90 13.65 7.10 9.62
20 6.06 18.60 5.22 21.95 8.43 16.24 13.98 6.75 10.36

Median 10.31 14.11 4.46 20.50 7.84 14.88 12.04 6.36 8.83
Mean 10.46 15.14 4.56 20.21 8.00 14.36 11.88 6.35 8.72
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Table A8. NCACN integrated astronomical parameters details (ǫ @λ = 550 nm).

Flight Method
Parameter Number MT HV H9 DN TE EN WT WG ME

1 3.77 0.65 2.97 0.58 1.63 1.35 0.93 2.13 1.56
2 1.29 0.79 3.12 0.54 1.51 0.85 1.09 1.81 1.34
3 1.23 0.76 2.88 0.52 1.48 0.76 1.03 1.67 1.36
4 1.96 0.83 4.17 0.54 1.61 1.24 1.13 1.93 1.50
5 2.26 0.89 2.81 0.62 1.43 0.70 1.32 1.80 1.39
6 0.74 0.80 2.29 0.61 1.42 0.79 1.17 1.91 1.26
7 1.55 0.70 1.91 0.60 1.43 0.66 1.07 1.79 1.97
8 0.57 1.03 2.88 0.57 1.18 0.63 0.74 1.69 1.03
9 1.13 1.04 2.67 0.54 1.24 0.71 1.09 1.74 1.04

ǫ/′′ 10 3.35 0.78 6.92 0.55 1.42 0.85 0.99 1.72 1.77
11 0.84 0.95 2.79 0.58 1.46 0.75 1.15 1.69 1.56
12 0.71 0.71 2.16 0.64 1.42 0.71 0.92 1.87 1.18
13 0.83 0.60 1.80 0.54 1.36 0.67 0.76 1.61 1.20
14 1.57 0.59 2.33 0.56 1.50 1.01 0.81 1.78 1.26
15 1.03 0.52 2.26 0.52 1.36 0.91 0.88 1.82 1.14
16 0.88 0.54 2.97 0.46 1.30 0.74 0.76 1.62 1.26
17 0.69 0.83 1.68 0.54 1.31 0.66 0.86 1.63 1.12
18 0.85 0.80 1.85 0.52 1.33 0.78 0.92 1.76 1.10
19 0.74 0.83 1.68 0.55 1.25 0.66 0.81 1.57 1.16
20 1.83 0.60 2.13 0.51 1.32 0.68 0.80 1.65 1.07

Median 1.08 0.79 2.50 0.54 1.42 0.75 0.92 1.75 1.26
Mean 1.39 0.76 2.71 0.55 1.40 0.81 0.96 1.76 1.31

Table A9. NCACN integrated astronomical parameters details (θAO @λ = 550 nm).

Flight Method
Parameter Number MT HV H9 DN TE EN WT WG ME

1 0.49 1.52 0.35 1.82 0.62 0.97 0.91 0.54 0.72
2 0.64 1.05 0.62 1.76 0.63 1.05 0.73 0.59 0.72
3 0.61 1.11 0.36 1.98 0.66 1.23 0.69 0.63 0.71
4 0.47 0.97 0.33 1.84 0.59 0.80 0.68 0.54 0.65
5 0.41 0.88 0.24 1.86 0.63 1.30 0.55 0.57 0.67
6 1.02 1.04 0.31 1.56 0.62 1.11 0.56 0.46 0.67
7 0.35 1.31 0.56 1.63 0.63 1.38 0.68 0.58 0.53
8 1.26 0.72 0.21 1.63 0.64 1.30 0.88 0.56 0.78
9 0.51 0.71 0.26 1.71 0.65 1.19 0.63 0.57 0.75

θAO/′′ 10 0.15 1.06 0.19 1.81 0.62 0.96 0.68 0.53 0.59
11 0.97 0.80 0.29 1.86 0.64 1.16 0.65 0.61 0.59
12 0.93 1.25 0.37 1.65 0.61 1.26 0.74 0.50 0.73
13 1.02 1.83 0.39 1.96 0.61 1.28 0.78 0.65 0.77
14 0.38 1.87 0.27 1.93 0.59 0.95 0.83 0.57 0.66
15 0.51 2.75 0.75 1.80 0.63 0.92 0.79 0.58 0.76
16 1.45 2.40 0.41 2.06 0.68 1.23 0.99 0.65 0.77
17 1.29 0.97 0.45 1.77 0.63 1.31 0.66 0.59 0.77
18 0.74 1.02 0.44 1.89 0.62 1.10 0.71 0.65 0.75
19 1.06 0.97 0.43 1.70 0.62 1.28 0.77 0.59 0.73
20 0.61 1.82 0.36 1.93 0.66 1.29 0.74 0.63 0.87

Median 0.63 1.06 0.36 1.82 0.63 1.21 0.72 0.58 0.72
Mean 0.74 1.30 0.38 1.81 0.63 1.15 0.73 0.58 0.71
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Table A10. NCACN integrated astronomical parameters details (σ2
I @λ = 550 nm).

Flight Method
Parameter Number MT HV H9 DN TE EN WT WG ME

1 2.28 0.18 1.94 0.14 0.80 0.50 0.36 1.16 0.69
2 0.63 0.30 1.33 0.14 0.74 0.32 0.50 0.94 0.60
3 0.69 0.27 1.90 0.12 0.69 0.25 0.52 0.82 0.62
4 1.19 0.33 2.85 0.14 0.85 0.54 0.58 1.06 0.74
5 1.66 0.39 2.96 0.15 0.72 0.22 0.79 0.99 0.68
6 0.29 0.30 2.07 0.17 0.73 0.29 0.72 1.26 0.64
7 1.38 0.22 0.99 0.16 0.73 0.20 0.53 0.97 1.10
8 0.19 0.53 3.69 0.16 0.64 0.21 0.33 0.96 0.49
9 0.79 0.54 2.83 0.14 0.65 0.25 0.63 0.93 0.50

σ2
I 10 5.37 0.29 8.17 0.14 0.73 0.35 0.52 1.01 0.96

11 0.36 0.45 2.42 0.14 0.74 0.26 0.62 0.88 0.85
12 0.31 0.23 1.62 0.17 0.75 0.23 0.47 1.19 0.56
13 0.32 0.14 1.40 0.13 0.72 0.22 0.40 0.80 0.54
14 1.32 0.14 2.49 0.13 0.81 0.41 0.38 0.99 0.65
15 0.74 0.09 0.77 0.13 0.68 0.39 0.41 0.96 0.51
16 0.23 0.10 1.58 0.11 0.61 0.24 0.29 0.79 0.54
17 0.22 0.34 1.18 0.14 0.69 0.21 0.51 0.91 0.52
18 0.45 0.31 1.25 0.13 0.72 0.29 0.48 0.86 0.52
19 0.27 0.33 1.26 0.15 0.69 0.22 0.41 0.86 0.57
20 0.85 0.14 1.66 0.12 0.64 0.22 0.41 0.84 0.44

Median 0.66 0.30 1.78 0.14 0.72 0.25 0.49 0.95 0.58
Mean 0.98 0.28 2.22 0.14 0.72 0.29 0.49 0.96 0.64
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Abstract: The geographical location of Yunnan province is at the upstream area of water vapor

transportation from the Bay of Bengal and the South China Sea to inland China. Understanding

the spatiotemporal variations of water vapor over this region holds significant importance. We

utilized the Global Navigation Satellite System (GNSS) data collected from 12 stations situated in

Yunnan, which are part of the Crustal Movement Observation Network of China, to retrieve hourly

precipitable water vapor (PWV) data from 2011 to 2022. The retrieved PWV data at Station KMIN

were evaluated by the nearby radiosonde data, and the results show that the mean bias and RMS of

the differences between the two datasets are 0.08 and 1.78 mm, respectively. Average PWV values at

these stations are in the range of 11.77 to 33.53 mm, which decrease from the southwest to the north

of Yunnan and are negatively correlated with the stations’ heights and latitudes. Differences between

average PWV in the wet season and dry season range from 12 to 27 mm. These differences tend to

increase as the average PWV increases. The yearly rates of PWV variations, averaging 0.18 mm/year,

are all positive for the stations, indicating a year-by-year increase in water vapor. The amplitudes of

the PWV annual cycles are 9.75–20.94 mm. The spatial variation of these amplitudes is similar to that

of the average PWV over the region. Generally, monthly average PWV values increase from January

to July and decrease from July to December, and the growth rate is less than the decline rate. Average

diurnal PWV variations show unimodal PWV distributions over the course of the day at the stations

except Station YNRL, where bimodal PWV distribution was observed.

Keywords: global navigation satellite system; precipitable water vapor; secular trend; annual cycle;

diurnal variation; radiosonde

1. Introduction

Water vapor in the atmosphere is a significant greenhouse gas [1,2] and it plays a
crucial role in various atmospheric physical and chemical processes. Water vapor is the
most active ingredient of the atmosphere. Its variations are closely associated with most
weather phenomena. Additionally, water vapor exerts influence on the global water cycle
and the heat balance between Earth and the atmosphere, as well as between the Earth–
atmosphere system and outer space. It also facilitates the transport of heat from tropical
regions to middle and high latitudes [3]. Thus, the observation of atmospheric water vapor
content holds immense importance for weather, climate, and environment studies.
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One term used to quantify the amount of water vapor is precipitable water vapor
(PWV), which represents the depth of water in a column of the atmosphere if all the water in
that column were precipitated as rain [4]. Atmospheric scientists have developed a variety
of ways to measure PWV, but each has its limitations. Accurate PWV can be obtained
by using radiosonde data, which include relative humidity, pressure, and temperature
observations at different altitudes [5]. However, radiosondes are typically released only
twice a day per site, and the distribution of these sites is relatively sparse. As a result, they
cannot provide PWV data with high spatiotemporal resolution [6]. Ground-based water
vapor radiometers are instruments that scan the sky and measure the microwave radiation
emitted by atmospheric water vapor [7]. While they can provide PWV data with high
temporal resolution, their spatial resolution is limited due to the limited number of these
instruments in use. Satellite-based water vapor microwave radiometers can provide high-
quality PWV data over oceans but face limitations over land. Although these microwave
radiometers onboard low-earth-orbit satellites offer high spatial resolution, their temporal
resolution is often compromised due to the long revisiting periods of the satellites. Infrared
water vapor radiometers installed on geostationary satellites, e.g., Fengyun-4 satellites,
retrieve PWV with high spatiotemporal resolutions (temporal resolution of 4–15 min and
horizontal resolution of several kilometers) [8], but they are unable to accurately measure
PWV on rainy or cloudy days.

Global Navigation Satellite System (GNSS) provides a cost-effective means of retriev-
ing PWV with high temporal resolution, regardless of weather conditions [9]. The GNSS
signals experience delays due to water vapor in the atmosphere. The relation between the
zenith wet delay (ZWD) of the microwave signals and PWV was modeled by Askne and
Nordius [10], establishing the basis for GNSS meteorology [11,12]. Since the usefulness of
GNSS for water vapor retrieval was demonstrated [6,9], it has been widely used in meteo-
rological and environmental studies. These include investigations into the relation between
PWV and precipitation [13–15], deep convections [16–18], the effects of incorporating the
GNSS-derived PWV into numerical weather prediction systems [19,20], summer monsoon
and atmospheric rivers [21–23], and drought monitoring [24]. Moreover, the long-time and
high temporal resolution GNSS-derived PWV data have been utilized to analyze secular
trends and diurnal variations of PWV [25–29].

Yunnan province is situated in the southwestern region of China, bordering the
southeastern side of the Tibetan Plateau. It occupies the headwater area of several major
rivers, e.g., the Jinsha River and Nanpan River in Yunnan serve as the upper reaches of
the Yangtze River and the Pearl River, respectively. Additionally, Yunnan is located in the
upstream region of the water vapor transportation from the Bay of Bengal and the South
China Sea to inland China. The variations in PWV across this area reflect changes in local
weather patterns, climate conditions, and hydrological environment. Understanding these
PWV variations is crucial for effective water resource and disaster management in Yunnan
and downstream regions. Thus, many studies have focused on the PWV variations in this
area. Fu et al. [30] and Hai et al. [31] utilized GPS data from 5–7 stations to analyze the
PWV variations in Yunnan, but the PWV time series data used in their studies spanned only
1–3 years, which are insufficient for conducting secular PWV variation analyses. Shen and
Duan [32] used the monthly NCEP/NCAR reanalysis data to examine the spatiotemporal
variation of PWV in Yunnan, but the monthly data may not adequately capture short-term
fluctuations, such as diurnal PWV variations. Li et al. [33] used GNSS data from 2010 to
2013 to analyze the multiscale temporal variations of PWV. Since their GNSS data were
from a single station at Dali, their results and conclusions are confined to this small area
rather than the entirety of Yunnan province. Hu et al. [34] investigated the variations of
GNSS-derived PWV over the Yunnan-Guizhou Plateau. Their study focused on the relation
between PWV and precipitation during convective weather in the summer season.

With the continuous advancements in both hardware and software of GNSS, the qual-
ity of GNSS observations has evidently improved. As the high-quality GNSS observations
accumulate in Yunnan, it is of great importance to investigate PWV variations over this area
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with the recent GNSS observables and the latest data processing strategies. In this study, we
adopted recent GNSS data over 11 years (2011–2022) from 12 stations located at Yunnan to
derive hourly PWV data. First, we evaluated the GNSS-derived PWV data with radiosonde
data. Then, we analyzed the geographical distributions of multiple-year-averaged PWV
values across the region. Next, we determined and analyzed the secular trends and am-
plitudes of annual and semiannual cycles of PWV variations. At last, we investigated the
monthly and diurnal variations of PWV at the individual stations. These analyses aim to
provide a thorough understanding of the multiscale spatiotemporal variations of PWV and
enhance our knowledge of the dynamic changes in PWV over Yunnan region.

2. Data and Methods

2.1. Data Description

The Crustal Movement Observation Network of China (CMONOC) has consistently
conducted long-term observations of GNSS data, ensuring a reliable and high-quality
dataset. In this study, we utilized GNSS data (sampling rate of 30 s) from CMONOC to
retrieve hourly PWV data. The period of the used data extends from 1 July 2011 to 30
June 2022 (11 years). To ensure comprehensive coverage, we selected 12 stations located
within Yunnan, spanning approximately 21◦N to 29◦N and 97◦E to 107◦E, to analyze PWV
variations. The geographical distribution of the stations is shown in Figure 1 (red triangles).
These stations are distributed with approximately even spacing. The longitudes, latitudes,
and heights of the GNSS stations are shown in Table 1.

Figure 1. Geographical distributions of GNSS and radiosonde stations. The red triangles mark the

locations of the GNSS stations, and the blue dots denote the sites of radiosondes. The inset presents a

zoomed-out map highlighting the province of Yunnan, enclosed by a distinct red rectangle.
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Table 1. The constructed Ts-Tm linear models and the coordinates of the related radiosonde sites

and GNSS stations. The first column shows the coordinates and names of the radiosonde sites.

Atmospheric profiles from these sites were utilized to construct Ts-Tm linear models shown in the

second column. Each Ts-Tm linear model displayed on a row was used to calculate Tm for the GNSS

stations presented on the same row, third column of the table.

Radiosonde
Lon (ºE), Lat (ºN), Hgt (m)

Ts-Tm Model (K)
GNSS

Lon(ºE), Lat(ºN), Hgt (m)

XC (Xichang) 102.26, 27.90, 1599 Tm = 0.58 Ts + 110.66
YNZD 99.70, 27.82, 3296
YNYS 100.75, 26.68, 2144

TC (Tengchong) 98.48, 25.11, 1649 Tm = 0.52 Ts + 130.75

YNRL 97.85, 24.00, 723
YNSD 99.19, 24.71, 1479
YNYL 99.37, 25.88, 1696

YNLC 100.08, 23.87, 1559

SM (Simao) 100.98, 22.76, 1303 Tm = 0.35 Ts + 181.68
YNMH 100.45, 21.95, 1166
YNMJ 101.67, 23.42, 1282

MZ (Mengzi) 103.38, 23.38, 1302 Tm = 0.49 Ts + 138.31 YNWS 104.25, 23.41, 1452

WN (Weining) 104.28, 26.86, 2236 Tm = 0.62 Ts + 102.15 YNHZ 103.29, 26.41, 2264

KM (Kunming) 102.68, 25.01, 1892 Tm = 0.45 Ts + 148.44
KMIN 102.80, 25.03, 1986
YNCX 101.49, 25.05, 1785

Each GNSS station is equipped with a TRIMBLE NETR9 receiver that is connected to
a TRM59800.00 or TRM59900.00 antenna. Additionally, there is a collocated meteorological
sensor at each station to record air pressures and temperatures. The air pressures and
temperatures are measured with accuracies of 0.3 mbar and 0.1 K, respectively. These
measurements are essential for converting zenith tropospheric delay (ZTD) to PWV. During
the conversion process, a key parameter is water vapor weighted mean temperature (Tm),
which directly affects the accuracy of the converted PWV. Tm is usually estimated from the
surface temperature (Ts) by using a simple linear model [9]. The linear relations between
Ts and Tm are highly location dependent in the region of Yunnan [8,35,36], indicating
that different Ts-Tm linear models may be adopted to calculate accurate Tm values at
different GNSS stations. We used the atmospheric profile data (from 2005 to 2018) observed
from 6 radiosonde stations to construct 6 site-specific Ts-Tm linear models, respectively.
These radiosonde sites are within or near the region of Yunnan (blue dots in Figure 1).
Table 1 shows the coordinates of the radiosonde stations, as well as their corresponding
Ts-Tm linear models. Each constructed Ts-Tm linear model was utilized to calculate Tm
for accurate PWV conversion at the nearby GNSS stations. The coordinates of these GNSS
stations, along with their corresponding Ts-Tm linear models, are also shown in Table 1.

2.2. Retrieval of PWV

GNSS signals experience delays as they pass through the neutral atmosphere, resulting
in the measured distances between satellites and receiving antennas to be longer than the
actual distances. The slant path tropospheric delay (in length) can be calculated by

SPD =
∫

s
N(s)ds (1)

where SPD is the slant path delay in length, s denotes the slant path passed by the GNSS
signal, and N(s) is the refractive index of the atmosphere. The N(s) is not a constant and
it varies based on several factors, including air pressures and temperature. Due to the
challenges in obtaining accurate vertical profiles of N(s) in practice, Equation (1) is not
commonly used to derive the SPD. In GNSS data processing, the tropospheric delay is
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estimated as an unknown quantity, and the ZTD instead of SPD is estimated to reduce the
number of the unknowns. The relation between SPD and ZTD is

SPD = MF · ZTD (2)

where MF is an elevation-angle-dependent mapping function. It can be written in continued
fraction form as [37,38]

MF =
1 + a

1+ b
1+c

sin e + a
sin e+ b

sin e+c

(3)

where e is the elevation angle of site-to-satellite direction, and coefficients a,b, and c are
derived from radiosonde data [39] or numerical weather models [38,40]. Equation (2) is suit-
able for the stations with azimuthal-symmetry local atmosphere. Under the circumstance
of an unsymmetrical atmosphere, two gradient parameters are added into Equation (2) to
compensate for the asymmetry [41].

The estimated ZTD can be partitioned into zenith hydrostatic delay (ZHD) and ZWD.
By using the real observed surface air pressure, the ZHD can be modeled with an accuracy
of several millimeters. The commonly used ZHD mode is [42]

ZHD = 0.0022768
P0

1 − 0.00266 cos(2ϕ)− 0.28 · 10−6 · h
(4)

where P0 is the surface pressure (in mbar), ϕ is the latitude of the GNSS station, and h is
the height of the station (in meters). The ZWD can be acquired by ZTD minus ZHD. The
conversion of ZWD to PWV is

PWV = Π · ZWD (5)

where Π is a dimensionless coefficient, which is given by [9,43]

Π =
106

ρwRv[−k1
Mw
Md

+ k2 +
k3
Tm

]
(6)

where ρw is the density of liquid water (in Kg/m3); Rv is the specific gas constant of water
vapor (in J/(Kg·K)); k1,k2, and k3 are constants (in K/mbar) [9]; Mw and Md are molar
masses of water vapor and dry air, respectively (in g/mol); and Tm is the weighted mean
temperature of atmosphere (in K). The definition of Tm is [44]

Tm =

∫

(

Pv
T

)

dz
∫

(

Pv
T2

)

dz
(7)

where Pv is the partial pressure of water vapor (in mbar), and T is the temperature (in K).
The practical application of Equation (7) is limited because it relies on having accurate
profiles of Pv and T, which are not readily available in many cases. Bevis et al. [9] used
the radiosonde data to find the relation between Tm and surface temperature (Ts), and
they fitted a linear Ts-Tm model. Thus, with this model, one can calculate the Tm from the
observed surface temperature. We used a similar method to generate the Ts-Tm models
specific for the study area (see Table 1 for the Ts-Tm models).

We used the Bernese GNSS software version 5.2 [45] to estimate ZTD. The data
processing basically followed the default strategy of the Center for Orbit Determination in
Europe (CODE) (Table 2).
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Table 2. Strategy of GNSS data processing.

Ephemeris

Orbit CODE GPS satellite orbit final products

Clock
CODE GPS satellite clock offset final
products

Measurement
models

Basic observables GPS L1 + L2

Modeled observables
Double differences
Ionosphere-free linear combination

Satellite antenna center
of mass offsets

igs14.atx

GPS attitude model
Nominal (yaw-steering) attitude
implemented

Troposphere a priori
model

ECMWF-based hydrostatic delay mapped
with hydrostatic VMF1

Ionosphere Second-order effect applied

Estimated
parameters

Adjustment method Weighted least-squares algorithms

Station coordinates Adjusted with minimum constraints

Troposphere
Zenith tropospheric delay and two gradient
parameters estimated every hour
Loose relative constraints of 5 m are applied

Gradient model Chen–Herring model [46]

Ambiguity Partly fixed

The Bernese software always attempts to fix ambiguities to the maximum extent, but
those ambiguities which do not satisfy the statistical threshold during ambiguity resolution
are kept as floating-point numbers. In our data processing, on average, 70% of ambiguities
were fixed as integers, the remaining were retained as floating-point values.

In this study, all the meteorological data used for converting GNSS ZTD to PWV
(pressure for calculating ZHD and temperature for converting ZWD to PWV) are observed
with the collocated meteorological equipment. We did not use other data (e.g., reanalysis
data) or apply any interpolation to fill the gaps of the meteorological observations. Thus, the
retrieved PWV time series are free of the potential biases caused by different meteorological
data sources or by the interpolations.

3. Results

3.1. Continuity of GNSS ZTD and PWV Time Series

Using the 30 s-interval GNSS observations, we estimated ZTD on an hour-by-hour
basis. Throughout the long-term observation period, the GNSS stations occasionally
encounter some interruptions due to instrument and electrical failures. This causes the
gaps in the observations. In addition, some noisy GNSS observations were eliminated in
the phase of quality checking during data processing, which could further increase the
gaps in the observations. As a result, ZTD on these corresponding epochs could not be
estimated. For assessing the continuity of the derived ZTD and PWV time series, we set an
evaluation index named Data Available Rate (DAR). The definition of DAR is the number
of real retrieved data over the number of ideal continuous data. The DAR of ZTD for each
station is shown in Figure 2 (red dots). The smallest DAR of ZTD is observed at Station
YNMH, which is 88%. At the other 11 stations, DARs of ZTD are larger than 90%, with
nine of them having a DAR greater than 98%. Regarding PWV, DAR values are comparable
to those of ZTD at Stations YNCX, YNLC, YNMH, YNSD, YNWS, YNYL, YNYS, and
YNZD. However, at the remaining stations, particularly at Station YNMJ, DARs of PWV
are significantly lower than those of ZTD. These discrepancies arise due to a large number
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of missing meteorological observations at those stations and no interpolation being applied
to fill the gaps of meteorological data for converting the corresponding ZTD into PWV.

Figure 2. Data available rates (DARs) of ZTD and PWV at each GNSS station. DAR = the number of

real retrieved data/the number of ideal continuous data.

3.2. Evaluation of the GNSS PWV with Radiosonde Data

We evaluated GNSS-derived PWV with the radiosonde data. The GNSS station KMIN
and radiosonde station Kunming are located in the same city, and the distance between
them is less than 15 km. Thus, the two stations are well spatially matched. We retrieved the
PWV from the radiosonde profiles (hereafter referred to as RDS-derived PWV). The PWV
is calculated as

PWV =
1

ρw

∫

q
g

dP (8)

where q is the specific humidity (in g/g), P is the pressure of the atmosphere (in Pa), and
g is the gravitational acceleration (in m/s2). In the computation, g is not regarded as a
constant since its value is dependent on the latitude and height.

The temporal resolution of RDS-derived PWV is 12 h, while that of GNSS-derived
PWV is 1 h. To ensure fair comparisons, we only chose data with the same epochs from
the two datasets. This selection process resulted in a total of 4040 paired data points for
the comparisons. Figure 3a shows both the time series of GNSS-derived PWV (red) and
RDS-derived PWV (blue). The two datasets match each other very well. The average bias
between them is 0.08 mm, and the RMS of the differences between them is 1.78 mm. There
is a data gap of GNSS PWV with the period spanning from 2013 to 2015 at Station KMIN.
An instrument failure at this station caused the missing of pressure and temperature
observations. Without these meteorological observables, we were not able to convert
the ZTD to PWV, which caused the data gap. Figure 3b shows the scatter points of the
two datasets and also the linear fitting result. The slope of the linear fitted model is
close to 1 (1.024) and the goodness of fit is 0.97, which all indicate that the two datasets
are highly consistent. These comparisons demonstrate that the GNSS-derived PWV has
similar accuracy to the RDS-derived one, and hence can be used for analyzing water
vapor variations.
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Figure 3. Comparison of GNSS and radiosonde PWV at Station KMIN. (a) The time series of GNSS-

PWV and RDS-PWV. (b) the goodness of fit between GNSS-PWV and RDS-PWV.

3.3. Average PWV and Spatial Distribution

We averaged PWV values between 2011 and 2022 for each GNSS station. Figure 4
shows the geographical distribution of the average PWV. The largest average PWV is
observed at Station YNRL located at the west boundary of Yunnan province, which is
above 30 mm, while the smallest one is at Station YNZD located at the northwest of the
area, which is only 11.8 mm (about 1/3 of the largest one). Average PWV values at the
other stations are in the range of 18 to 29 mm. In general, the average PWV tends to
decrease from southwest to the north of the area (Figure 4 contour lines). In addition to
the all-season averaged PWV, we also calculated the average PWV in the wet season (June
to October) and dry season (November to May) separately for the GNSS stations. The
geographical distributions of wet-season and dry-season averaged PWV are similar to
those of the all-season averaged PWV.
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Figure 4. Geographical distribution of 11-year-averaged PWV observed at the GNSS stations. The

color on a circle indicates the value of average PWV at that station. The red lines are the contour lines

of average PWV.

Figure 5 shows the relationship between the variation in average PWV and both the
station height and latitude. The largest average PWV is observed at the station with the
lowest height (YNRL: 723 m), while the smallest average PWV is at the highest station
(YNZD: 3297). It clearly shows that the average PWV decreases as the height of the GNSS
station increases. As for the latitudes, it shows that, in general, the average PWV decreases
as the latitude of the station increases, except for Station YNRL. The latitude of Station
YNRL is not the lowest one among the 12 GNSS stations; however, the average PWV
observed at this station is the largest. This is probably subject to the special local climate of
Station YNRL.

Figure 6 shows the all-season, wet-season, and dry-season averaged PWV for each
station. At most stations, the average PWV values in the wet season are about 10 mm
larger than those of the all-season averaged PWV, while the average PWV values in the dry
season are smaller than those of the all-season averaged PWV by about 10 mm. The larger
all-season averaged PWV values generally correspond to the larger average PWV values
in both the wet season and dry season. The differences between average PWV in the wet
season and dry season at these stations are in the range of 12 to 27 mm (Figure 6 blue bars).
Overall, these differences tend to decease as the average PWV decreases.
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Figure 5. Relation of the variation in average PWV with the station height and latitude. The color

represents the value of average PWV.

 

Figure 6. All-season (black), wet-season (red), and dry–season (green) averaged PWV for each GNSS

station. A blue bar is the difference between the average PWV in wet season and dry season at the

corresponding station. The stations are arranged in order of decreasing PWV.

3.4. Secular, Annual and Semiannual Variations of PWV

The time series of GNSS-derived PWV at these stations show significant annual
cycles. Figure 7 shows the PWV variation at Station YNSD (other stations show similar
variations). To quantitatively analyze the PWV time series at the stations, we modeled the
PWV variations with a mathematical model that contains a secular trend, an annual cycle,
and a semiannual cycle. The model is written as
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PWV(t) = a0 + a1(t − 2011.0) + A1 sin(2π(t − 2011.0) + ϕ1) + A2 sin(4π(t − 2011.0) + ϕ2) (9)

where t is the time in unit of year, a0 and a1 are the coefficients that describe the secular
trend of PWV variation, A1 and A2 are the amplitudes of annual and semiannual PWV
variations, and ϕ1 and ϕ2 are the initial phases.

Figure 7. GNSS-derived PWV time series at Station YNSD. The red solid line in (a) indicates the

secular trend of PWV variations. The red sinusoid in (b) consists of the secular and the annual

variation. In (c), the blue sinusoid is the semiannual variation superimposed on the secular trend,

and the red sinusoid consists of the secular, annual, and semiannual variations.

We estimated the coefficients of Equation (9) by the least-squared method for each
station. Figure 7a shows the secular trend of PWV variations at Station YNSD (red line).
The secular trend is indistinctive, which indicates that the year-to-year change of PWV
quantity is very slow. The superposition of the annual and secular variation for Station
YNSD is shown in Figure 7b (red sinusoid), which well describes the magnitude of the
fluctuation of PWV. When the term of semiannual variation (blue sinusoid in Figure 7c) is
added, the model (red sinusoid in Figure 7c) fits the GNSS-derived PWV even better.

From the secular trends of PWV variations, we derived the rate of interannual PWV
variations for each station. The rates are positive at all stations (Figure 8), averaging
0.18 mm/year, which indicates that the average PWV observed at each station increases
yearly from 2011 to 2022. The minimal rate is observed at Station KMIN, which is
0.11 mm/year, while at Stations YNYC, YNYL, and YNHZ, the rates are up to or above
0.22 mm/year (twice the minimal rate). The derived rate of interannual PWV variations at
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Station YNMJ is 0.29 mm/year (not shown in Figure 8), which is significantly larger than
the rates at the other stations. Due to the lack of collocated meteorological data before 2017
at Station YNMJ, the time span of the available GNSS-derived PWV data at this station
(2017–2022) is much shorter than for the data from the other stations (2011–2022). Thus,
we believe that the derived rate of interannual PWV variations at Station YNMJ is not as
reliable as the derived rates at the other stations.

 

Figure 8. Rate of interannual PWV variations and amplitude of annual PWV variations at each

station. The colors filled in the circles indicate the rates of interannual PWV variations and the arrows

denote the amplitudes of PWV annual variations.

Figure 8 also shows the amplitude of the annual cycle of PWV variations at each
station. The average of the annual PWV variation amplitudes at these stations is 15 mm.
The maximal amplitude is observed at Station YNRL, which reaches 20.9 mm, while the
minimum is at Station YNZD, which is 9.7 mm. The distribution of the annual cycle
amplitudes shows that the magnitude of the amplitude decreases from the southwest to the
north of Yunnan region. This phenomenon is highly similar to the distribution of average
PWV (refer to Figure 4 for the average PWV distribution), indicating that the larger average
PWV values correspond to the greater amplitude of the annual cycle of PWV variations.
The amplitudes of semiannual PWV variations, in the range of 0.3 to 2.5 mm, are much
smaller than the annual amplitudes (compare the blue sinusoid in Figure 7c with red
sinusoid in Figure 7b). On average, the semiannual amplitudes are about one tenth of the
annual amplitudes.

3.5. Monthly and Diurnal Variations of PWV

We averaged PWV values over the period from 2011 to 2022 for each individual
month (January to December). Figure 9 shows the monthly variations in PWV at the
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12 GNSS stations. The curves representing the month-to-month changes in PWV exhibit
similar patterns across all stations. At most stations, the maximal monthly average PWV
values are in July (Stations KMIN and YNWS in June), and the minimums are in January
(Stations YNMH and YNMJ in February). The curves are not symmetric about the peaks:
the increasing rates of PWV from January to July are less than the decreasing rates from
July to December. The distribution of PWV is uneven among the seasons, with the wet
season typically accounting for approximately 70% of the total PWV over the entire year
on average.

Figure 9. Monthly PWV variation at each station.

Using the hourly GNSS-derived PWV from 2011 to 2022, we calculated the all-season,
wet-season, and dry-season average PWV values for each individual hour (0:00, 1:00, . . . ,
23:00). Figure 10 shows the diurnal PWV variations at Stations KMIN and YNRL. The
curves of all-season, wet-season, and dry-season averaged PWV diurnal variations are
similar at the same station. Diurnal PWV variations at Station KMIN show the unimodal
distribution pattern among the hours (Figure 10a–c). Data of the other stations show a
similar pattern of PWV distribution as Station KMIN except for Station YNRL, where
bimodal distribution of PWV is observed. At Station YNRL, the all-season, wet-season, and
dry-season averaged diurnal variations of PWV all show that the high PWV values occur
both in the afternoon and at night.

Though diurnal PWV variations observed at 11 out of 12 GNSS stations show a similar
unimodal distribution, the diurnal peaks (or valleys) of PWV values are asynchronous
among different stations. Table 3 shows the time of diurnal peak and valley for the all-
season, wet-season, and dry-season averaged PWV at each station (except Station YNRL).
For these stations, the diurnal maximums (peaks) of the all-season averaged hourly PWV
appear at 17:00–23:00 local time, most at 17:00–19:00 (late afternoon), while the diurnal
minimums (valleys) occur at 8:00–10:00 (morning). The differences between the times of
diurnal PWV peaks in the wet season and dry season are 0 to 5 h (most no more than 2 h).
The times of diurnal PWV minimum in the dry season are 0 to 4 h later than those in the
wet season (most no more than 1 h).
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Figure 10. Diurnal PWV variations at Stations KMIN (left) and YNRL (right): (a–c) are all-season,

dry-season, and wet-season averaged diurnal PWV variations at Station KMIN, respectively, while

(d–f) are for Station YNRL. The hours are local time.

Table 3. Hours (local time) of the diurnal PWV maximum (peak) and minimum (valley) at each

station (except Station YNRL).

Site
All-Season Ave. Dry-Season Ave. Wet-Season Ave.

Max Min Max Min Max Min

KMIN 21 10 23 12 20 8
YNCX 17 8 18 8 17 8
YNHZ 18 9 21 10 17 9
YNLC 17 8 17 9 17 8
YNMH 18 9 18 9 20 8
YNMJ 23 8 21 8 23 8
YNSD 17 8 16 8 17 8
YNWS 19 8 20 9 18 8
YNYL 19 9 19 9 24 9
YNYS 18 9 18 9 18 9
YNZD 19 10 20 10 18 7

We calculated the magnitude of the diurnal PWV variation for each station. The
magnitude, describing diurnal PWV fluctuation, is defined as the diurnal PWV peak
minus valley. Figure 11 shows the geographical distribution of the magnitudes of diurnal
PWV variations. The magnitudes of the diurnal PWV fluctuations, averaging 1.1 mm, are
station dependent. The smallest magnitude (0.5 mm) is observed at Station YNRL, while
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at this station, both the average PWV and the amplitude of annual PWV variations are
the largest among the other stations (refer to Figure 4 for the average PWV and Figure 8
for the amplitudes). The largest magnitude is at Station YNHZ (1.6 mm), which is about
three times the magnitude at Station YNRL. However, Both the average PWV and the
amplitude of annual PWV variations at Station YNHZ are much smaller than those at
Station YNRL. The distribution of the magnitudes of diurnal PWV variations show no
significant geographical pattern.

 

Figure 11. Magnitude of diurnal PWV variation at each station. The magnitude is defined as the

difference between the diurnal PWV maximum and minimum.

4. Discussion

We evaluated the GNSS-derived PWV with radiosonde data at Station KMIN, and
the mean bias and RMS of the differences between the two datasets are 0.08 mm and
1.78 mm, respectively. Some previous studies also made similar comparisons in the region
of Yunnan. Fu et al. [30] and Hai et al. [31] assessed the GNSS-derived PWV with RDS-
derived PWV at 3–5 stations (including station KMIN) located at Yunnan. Their results show
high correlations between the time series of GNSS-derived PWV and RDS-derived PWV
(correlation coefficients larger than 0.9), which are consistent with our results. Nonetheless,
their comparisons show 5–7 mm RMS of differences between the two datasets, which are
much larger than the 1.78 mm RMS in this study. The results of Hai et al. [31] shows
significant biases between the GNSS-derived PWV and RDS-derived PWV, while there
are no evident biases observed in the current study and in the study of Fu et al. [30]. Hu
et al. [34] used the ERA5 reanalysis dataset of the European Center for Medium-Range
Weather Forecasts (ECMWF) to evaluate the GNSS-derived PWV, and their results show
2–6 mm biases and 4.5–7 mm RMS between GNSS-derived PWV and ERA5-derived PWV.
There are many factors for the different evaluation results in these studies. Normally, the
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consistency of different-sourced PWV data in the wet season is poorer than that in the dry
season. Hai et al. [31] and Hu et al. [34] exclusively used the summer data (in the wet
season) for the evaluation, which is partly responsible for the large biases and RMS in their
PWV assessments. We used the all-season data for the evaluation, and applied the latest
mapping function to estimate the ZTD. Moreover, we generated the site-specific weighted
mean temperature models for the region and used these customized models to convert the
ZWD to PWV. All these contribute to the high consistency between GNSS-derived PWV
and RDS-derived PWV in current study.

The distribution of all-season averaged PWV values show a clear southwest-to-north
decreasing pattern in the region of Yunnan, and both the average PWV in wet season
and dry season show a similar decreasing pattern. These results are consistent with the
study of Shen and Duan [32]. In their study, the used PWV data were from a different
source (NCEP/NCAR monthly reanalysis data), which further demonstrates the reliability
of our derived PWV variation pattern. Their data are from 1981 to 2011, while ours are
from 2011 to 2022, indicating that the PWV spatial variation pattern in Yunnan has not
changed during the last four decades. Our results show that the content of PWV is highly
dependent on the station height and latitude: a higher station height (or latitude) generally
corresponds to less PWV. This negative correlation between PWV and station heights (or
latitudes) was also found in the studies of Jin et al. [25] and Shi et al. [28]. These results
are reasonable. The observed PWV is a quantity that integrated the water vapor from the
station height to the top of the troposphere. It is inherently negatively correlated with the
station height. Globally, high latitudes are colder than low latitudes. The ability of the
atmosphere to hold water vapor decreases are the temperature decreases. These explain
the negative correlation between the PWV value and the latitude.

The diurnal variations in PWV at the stations in Yunnan exhibit a predominantly
unimodal distribution over the course of the day. However, it is worth noting that Station
YNRL, located at the west boundary of Yunnan, displays a distinctive bimodal distribution
of PWV. Hai et al. [31] found this bimodal diurnal PWV distribution at a different station in
Mengla county, which is at the south boundary of Yunnan (see Figure A1 in Appendix A).
These bimodal diurnal PWV distributions were observed at both the west (Station YNRL at
Ruili county) and south (Mengla county) boundary of Yunnan, indicating the special local
climate at these border areas.

5. Conclusions

Using GNSS data observed at 12 CMONOC stations located at Yunnan, China, we
retrieved the hourly PWV from 2011 to 2022 and analyzed multiscale spatiotemporal PWV
variations over the region. Evaluating the GNSS-derived PWV with radiosonde data at
Station KMIN shows good consistency between the two datasets, indicating that the GNSS-
derived PWV is as accurate as RDS-derived PWV and hence it can be reliably used in
meteorological studies. In the study area, the average PWV values observed at different
stations can be quite different: the maximum is three times as large as the minimum.
Generally, the average PWV increases with the decrease in station height, and also with
the decrease in station latitude (excluding Station YNRL). For these stations, the higher
average PWV in the wet season corresponding to higher average PWV in the dry season,
and the mean of the differences between average PWV in the wet season and dry season
is 20 mm. We analyzed the secular trends and cycles of the PWV time series. The yearly
rates of PWV variations are all positive at the 12 stations. This phenomenon of increasing
PWV year by year is in line with the context of climate warming. The average amplitude of
PWV annual cycles is 15 mm, which is about 10 times as large as the average amplitude of
PWV semiannual cycles. Monthly PWV variations show that the maximal monthly average
PWV occurs in July or June, and the minimum appears in January or February. The content
of average PWV in the wet season accounts for 70% of the sum of PWV over the entire
year. Average diurnal PWV variations show unimodal distributions over the course of the
day at the stations, while Station YNRL is an exception, where two diurnal PWV peaks
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were observed. At most stations, the average diurnal PWV maximums occur in the late
afternoon (17:00–19:00), and the minimums appear in the morning (8:00–10:00).

In this study, both the largest average PWV and the greatest amplitude of the annual
PWV cycle were observed at Station YNRL. The diurnal PWV distribution of this station
(bimodal) is different from that of the other stations (unimodal). Furthermore, the average
PWV at this station did not follow the rule of negative correlation between PWV and
latitude as the other stations do. All these indications suggest that the local climate at
Station YNRL differs from that of the other stations, which deserves further investigation.
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Appendix A

 

Figure A1. Locations of Station Mengla, Station YNRL, and Station KMIN. The red triangles mark

the locations of the GNSS stations.

126



Remote Sens. 2024, 16, 412

References

1. Anand, K.; Inamdar, V.; Ramanathan, N.; Loeb, G. Satellite observations of the water vapor greenhouse effect and column

longwave cooling rates: Relative roles of the continuum and vibration-rotation to pure rotation bands. J. Geophys. Res.-Atmos.
2004, 109, 1–9.

2. Easterbrook, D. Greenhouse gases. In Evidence-Based Climate Science: Data Opposing CO2 Emissions as the Primary Source of Global
Warming, 2nd ed.; Easterbrook, D., Ed.; Elsevier: Oxford, UK, 2016; pp. 163–173.

3. Mills, E. Weather Studies: Introduction to Atmospheric Science, 6th ed.; American Meteorological Society: Boston, MA, USA, 2015.

4. Salby, M. Fundamentals of Atmospheric Physics; Academic Press: San Diego, CA, USA, 1996; pp. 25–29.

5. Wang, J.; Zhang, L.; Dai, A.; Immler, F.; Sommer, M.; Vomel, H. Radiation dry bias correction of Vaisala RS92 humidity data and

its impacts on historical radiosonde data. J. Atmos. Ocean. Technol. 2013, 30, 197–214. [CrossRef]

6. Rocken, C.; Ware, R.; Van Hove, T.; Solheim, F.; Alber, C.; Johnson, J.; Bevis, M.; Businger, S. Sensing atmospheric water vapor

with the Global Positioning System. Geophy. Res. Lett. 1993, 20, 2631–2634. [CrossRef]

7. Rocken, C.; Hove, T.; Johnson, J.; Solheim, F.; Ware, R.; Bevis, M.; Chiswell, S.; Businger, S. GPS/STORM—GPS sensing of

atmospheric water vapor for meteorology. J. Atmos. Ocean Tech. 1995, 12, 468–478. [CrossRef]

8. Wang, M. The Assessment and Meteorological Applications of High Spatiotemporal Resolution GPS ZTD/PW Derived by Precise

Point Positioning. Ph.D. Thesis, Tong University, Shanghai, China, 2019.

9. Bevis, M.; Businger, S.; Herring, T.; Rocken, C.; Anthes, R.; Ware, R. GPS meteorology: Remote sensing of atmospheric water

vapor using the Global Positioning System. J. Geophys. Res. 1992, 97, 15787–15801. [CrossRef]

10. Askne, J.; Nordius, H. Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci. 1987, 22, 379–386.

[CrossRef]

11. Duan, J.; Bevis, M.; Fang, P.; Bock, Y.; Chiswell, S.; Businger, S.; Rochen, C.; Solheim, F.; Van Hove, T.; Ware, R.; et al. GPS

meteorology: Direct estimation of the absolute value of precipitable water. J. Appl. Meteorol. 1996, 35, 830–838. [CrossRef]

12. Fang, P.; Bevis, M.; Bock, Y.; Gutman, S.; Wolfe, D. GPS meteorology: Reducing systematic errors in geodetic estimates for zenith

delay. Geophys. Res. Lett. 1998, 25, 3583–3586. [CrossRef]

13. Cao, Y.; Fang, Z.; Xia, Q. Relationship between GPS precipitable water vapor and precipitation. J. Appl. Meteorol. Sci. 2005, 16,

54–59.

14. Van Baelen, J.; Reverdy, M.; Tridon, F.; Labbouz, L.; Dick, G.; Bender, M.; Hagen, M. On the relationship between water vapour

field evolution and the life cycle of precipitation systems. Q. J. R. Meteorol. Soc. 2011, 137, 204–223. [CrossRef]

15. Huang, L.; Mo, Z.; Xie, S.; Liu, L.; Chen, J.; Kang, C.; Wang, S. Spatiotemporal characteristics of GNSS-derived precipitable water

vapor during heavy rainfall events in Guilin, China. Satell. Navig. 2021, 2, 13. [CrossRef]

16. Brenot, H.; Neméghaire, J.; Delobbe, L.; Clerbaux, N.; De Meutter, P.; Deckmyn, A.; Deckmyn, A.; Deleloo, A.; Frappez, L.;

Roozendael, M. Preliminary signs of the initiation of deep convection by GNSS. Atmos. Chem. Phys. 2013, 13, 5425–5449.

[CrossRef]

17. Adams, D.; Barbosa, H.; Gaitán De Los Ríos, K. A spatiotemporal water vapor-deep convection correlation metric derived from

the Amazon dense GNSS meteorological network. Mon. Weather Rev. 2017, 145, 279–288. [CrossRef]

18. Shi, C.; Zhou, L.; Fan, L.; Zhang, W.; Cao, Y.; Wang, C.; Xiao, F.; Lv, G.; Liang, H. Analysis of ‘21·7’ extreme rainstorm process in

Henan Province using BeiDou/GNSS observation. Chin. J. Geophys.-CH 2022, 65, 186–196.

19. Vedel, H.; Huang, X. Impact of ground based GPS data on numerical weather prediction. J. Meteorol. Soc. JPN 2004, 82, 459–472.

[CrossRef]

20. Bennitt, G.; Jupp, A. Operational assimilation of GPS zenith total delay observations into the Met Office numerical weather

prediction models. Mon. Weather Rev. 2012, 140, 2706–2719. [CrossRef]

21. Means, J. GPS precipitable water as a diagnostic of the north American monsoon in California and Nevada. J. Clim. 2013, 26,

1432–1444. [CrossRef]

22. Moore, A.; Small, I.; Gutman, S.; Bock, Y.; Dumas, J.; Fang, P.; Haase, J.; Jackson, M.; Laber, J. National weather service forecasters

use GPS precipitable water vapor for enhanced situational awareness during the Southern California Summer Monsoon. Bull.
Am. Meteorol. Soc. 2015, 96, 1867–1877. [CrossRef]

23. Wang, M.; Wang, J.; Bock, Y.; Liang, H.; Dong, D.; Fang, P. Dynamic mapping of the movement of landfalling atmospheric rivers

over southern California with GPS data. Geophys. Res. Lett. 2019, 46, 3551–3559. [CrossRef]

24. Zhao, Q.; Ma, X.; Yao, W.; Liu, Y.; Yao, Y. A drought monitoring method based on precipitable water vapor and precipitation. J.
Clim. 2020, 33, 10727–10741. [CrossRef]

25. Jin, S.; Li, Z.; Cho, J. Integrated water vapor field and multiscale variations over China from GPS measurements. J. Appl. Meteorol.
Clim. 2008, 47, 3008–3015. [CrossRef]

26. Jin, S.; Luo, O. Variability and climatology of PWV from global 13-year GPS observations. IEEE Trans. Geosci. Remote 2009, 47,

1918–1924. [CrossRef]

27. Wang, J.; Zhang, L. Climate applications of a global 2-hourly atmospheric precipitable water dataset derived from IGS tropospheric

products. J. Geod. 2009, 83, 209–217. [CrossRef]

28. Shi, C.; Zhang, W.; Cao, Y.; Lou, Y.; Liang, H.; Fan, L.; Satirapod, C.; Trakolkul, C. Atmospheric water vapor climatological

characteristics over Indo-China region based on BeiDou/GNSS and relationships with precipitation. Acta Geod. Cartogr. Sin. 2020,

49, 1112–1119.

127



Remote Sens. 2024, 16, 412

29. Wu, M.; Jin, S.; Li, Z.; Cao, Y.; Ping, F.; Tang, X. High-precision GNSS PWV and its variation characteristics in China based on

individual station meteorological data. Remote Sens. 2021, 13, 1296. [CrossRef]

30. Fu, R.; Duan, X.; Liu, J.; Sun, J.; Wang, M.; Chen, X.; Liu, Y. Characteristics of ground-based GPS-retrieved PWV in Yunnan.

Meteorol. Sci. Technol. 2010, 38, 456–462.

31. Hai, Y.; Sun, J.; Chen, X. The analysis of GPS-retrieved PWV characteristic in Yunnan from 2007–2010. Yunnan Geogr. Environ. Res.
2011, 23, 78–84.

32. Shen, Y.; Duan, W. Characteristics of temporal and spatial distribution of water vapor resource in Yunnan area. Environ. Sci. Surv.
2016, 35, 36–41.

33. Li, Y.; Xu, A.; Dong, B. Variation characteristics of precipitable water volume observed by GPS in Dali. J. Meteorol. Res. Appl. 2020,

41, 32–37.

34. Hu, H.; Cao, Y.; Shi, C.; Lei, Y.; Wen, H.; Liang, H.; Tu, M.; Wan, X.; Wang, H.; Liang, J.; et al. Analysis of the precipitable water

vapor observation in Yunnan–Guizhou Plateau during the convective weather system in summer. Atmosphere 2021, 12, 1085.

[CrossRef]

35. Wang, M.; Cao, Y.; Liang, H.; Tu, M.; Liu, Z. On the accuracy of regional weighted mean temperature linear models over China. J.
Nanjing Univ. Inf. Sci. Technol. (Nat. Sci. Ed.) 2021, 13, 161–169.

36. Wang, M.; Chen, J.; Han, J.; Zhang, Y.; Fan, M.; Yu, M.; Sun, C.; Xie, T. Region-specific and weather-dependent characteristics

of the relation between GNSS weighted mean temperature and surface temperature over China. Remote Sens. 2023, 15, 1538.

[CrossRef]

37. Niell, A. Preliminary evaluation of atmospheric mapping functions based on numerical weather models. Phys. Chem. Earth 2001,

26, 475–480. [CrossRef]

38. Böhm, J.; Schuh, H. Vienna mapping functions in VLBI analyses. Geophy. Res. Lett. 2004, 31, L01603. [CrossRef]

39. Neill, A. Global mapping functions for the atmosphere delay at radio wavelengths. J. Geophys. Res. 1996, 101, 3227–3246.

[CrossRef]

40. Böhm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global mapping function (GMF): A new empirical mapping function based on data

from numerical weather model data. Geophys. Res. Lett. 2006, 33, L07304. [CrossRef]

41. Davis, J.; Elgered, G.; Niell, A.; Kuehn, C. Ground based measurement of gradients in the “wet” radio refractivity of air. Radio Sci.
1993, 28, 1003–1018. [CrossRef]

42. Saastamoinen, J. Atmospheric correction for troposphere and stratosphere in radio ranging of satellites. In The Use of Artificial
Satellites for Geodesy; Henriksen, S., Mancini, A., Chovitz, B., Eds.; William Byrd Press: Richmond, VA, USA, 1972; Volume 15,

pp. 247–252.

43. Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.; Anthes, R.; Rocken, C.; Ware, R. GPS meteorology: Mapping zenith wet delays

onto precipitable water. J. Appl. Meteorol. 1994, 33, 379–386. [CrossRef]

44. Davis, J.; Herring, T.; Shapiro, I.; Rogers, A.; Elgered, G. Geodesy by radio interferometry: Effects of atmospheric modeling errors

on estimates of baseline length. Radio Sci. 1985, 20, 1593–1607. [CrossRef]

45. Dach, R.; Lutz, S.; Walser, P.; Fridez, P. Bernese GNSS Software Version 5.2; User Manual; Astronomical Institute, University of Bern,

Bern Open Publishing: Bern, Switzerland, 2015; ISBN 978-3-906813-05-9. [CrossRef]

46. Chen, G.; Herring, T. Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J. Geophy. Res. 1997, 102,

20489–20502. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

128



Citation: Liang, Y.; Kou, L.; Huang,

A.; Gao, H.; Lin, Z.; Xie, Y.; Zhang, L.

Comparison and Synthesis of

Precipitation Data from CloudSat

CPR and GPM KaPR. Remote Sens.

2024, 16, 745.

https://doi.org/10.3390/ rs16050745

Academic Editor: Kenji Nakamura

Received: 16 January 2024

Revised: 11 February 2024

Accepted: 18 February 2024

Published: 21 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing 

Article

Comparison and Synthesis of Precipitation Data from CloudSat
CPR and GPM KaPR

Yanzhi Liang 1, Leilei Kou 1,2,*, Anfan Huang 1, Haiyang Gao 1,2, Zhengjian Lin 3, Yanqing Xie 4 and Liguo Zhang 4

1 School of Atmospheric Physics, Nanjing University of Information Science and Technology,

Nanjing 210044, China; 20211205006@nuist.edu.cn (Y.L.); gaohy@nuist.edu.cn (H.G.)
2 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for

Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information

Science and Technology, Nanjing 210044, China
3 Hainan Province Meteorological Detection Center, Haikou 570203, China
4 Shanghai Institute of Satellite Engineering, Shanghai 201109, China

* Correspondence: 002358@nuist.edu.cn

Abstract: Employing different bands of radar to detect precipitation information in identical regions

enables the acquisition of a more comprehensive precipitation cloud structure, thereby refining the

continuity and completeness of precipitation measurements. This study first compared the coincident

data from CloudSat W-band cloud profiling radar (CPR) and Global Precipitation Measurement

Mission (GPM) Ka-band precipitation radar (KaPR) from 2014 to 2017, and then a synthesis of the

radar reflectivity from CPR and KaPR was attempted to obtain a complete cloud and precipitation

structure. The findings of the reflectivity comparisons indicated that the echo-top height identified by

CPR is on average 3.6 to 4.2 km higher than that from KaPR, due to the higher sensitivity. Because of

strong attenuation of CPR by liquid-phase particles, the reflectivity below the height of the melting

layer usually shows an opposite gradient to KaPR with decreasing altitude. The difference in the

near-surface rain rates of CPR and KaPR was found to be related to reflectivity gradients in the vertical

direction, and the larger the reflectivity gradients, the greater the differences in near-surface rain rates.

For better representing the complete vertical structure of precipitation clouds and improving the

consistency of the reflectivity and precipitation rate, the radar reflectivity was weighted, synthesized

from CPR and KaPR based on the gradient difference of the reflectivity from the two radars. We

presented the synthesis results for a stratiform cloud and a deep convective case, and Spearman’s

rank correlation coefficient (rs) between the GPM combined radiometer precipitation rate and the

radar reflectivity was utilized to analyze the performance of the synthesis. The consistency between

synthesized reflectivity and precipitation rate in the non-liquid phase was improved compared with

KaPR, and the rs of the ice and mixed phases was increased by about 12% and 10%, respectively.

Keywords: CloudSat cloud profiling radar (CPR); Global Precipitation Measurement Mission (GPM)

Ka-band precipitation radar (KaPR); precipitation data; comparison; synthesis

1. Introduction

An accurate characterization of global precipitation is indispensable for improving
global climate and weather forecasting models, as well as for evaluating the global energy
budget and water resources [1]. Clouds play an important role in the hydrological cycle,
redistributing water and generating precipitation on a global scale. To thoroughly com-
prehend the significance of clouds and precipitation, and to enhance their performance in
numerical models, it is crucial to obtain global-scale measurements of these phenomena
and conduct detailed investigations into their formation, development, and dissipation
processes across all scales [2]. Microwave sensors outperform infrared and visible-light
sensors in precipitation retrieval, since they exhibit higher sensitivity to rain and ice parti-
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cles [3]. Moreover, active microwave cloud and precipitation radars have the advantages of
strong penetration and high accuracy of precipitation estimation [4].

The CloudSat satellite equipped with a W-band cloud profiling radar (CPR) can
quantitatively measure the vertical structure of clouds and precipitation [5]. The Global Pre-
cipitation Measurement Mission (GPM) core satellite carries a dual-frequency precipitation
radar (DPR) operating in the Ku band and Ka band [6]. DPR can provide measurements of
the 3D precipitation structure on a global scale. Owing to differences in orbital inclinations,
the CloudSat satellite and the GPM satellite occasionally intersect, thereby affording an
opportunity for multi-frequency precipitation measurement.

Conducting a comparative study on precipitation measurement using radar systems
operating at different bands is of paramount importance in order to harness and integrate
the unique strengths of each band. In conjunction with the CloudSat CPR, Berg et al. (2010)
utilized the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) to assess
rainfall distribution and intensity in tropical and subtropical oceans [7]. Their results indi-
cated that CPR detected rainfall occurrences nearly 2.5 times more frequently than TRMM
PR. Tang et al. (2017) conducted a global-scale evaluation by matching TRMM PR, GPM
dual-frequency precipitation radar (DPR), and CloudSat CPR data [8]. Sindhu et al. (2017)
compared the reflectivity derived from CloudSat CPR and TRMM PR by analyzing their
coincident events [9]. The results demonstrated that the reflectivity from CloudSat CPR was
approximately 10 dBZ lower than that of TRMM PR below a height of 4 km. Fall et al. (2013)
analyzed the vertical structure of storms utilizing data from CloudSat CPR, TRMM PR,
and ground-based radar [10]. They further conducted multi-frequency measurements
of microphysical quantities within different regions of the melting layer and carried out
comparisons among them. This study revealed the characteristics of the bright band in
cold-season precipitation and its impact on radar-based quantitative precipitation estima-
tion. CloudSat CPR exhibited excellent sensitivity in detecting snow, whereas GPM KaPR,
as a supplemental payload designed to compensate for the limitations of the Ku band in de-
tecting snow, ice, and light rain, also demonstrated robust snow detection capabilities. The
ability of DPR to identify snowfall was evaluated by utilizing a dataset with observation
intervals of less than 5 min between DPR and CPR [11]. Mroz et al. (2021) compared surface
snowfall rates estimated by GPM DPR and CloudSat CPR with estimates derived from
multi-radar and multi-sensor composite products covering the continental United States
from November 2014 to September 2020 [12]. Skofronick-Jackson et al. (2019) compared
three years of CPR and DPR snowfall data, taking into account differences in hardware,
inversion algorithms, and radar bands. It was found that the global average near-surface
snowfall accumulation in DPR was about 43% lower than that in CPR [13].

The Ka- and W-band spaceborne radars possess different advantages in the measure-
ment of precipitation structures. The higher frequency of the W-band radar enables it to
achieve superior spatial resolution and sensitivity, capturing detailed cloud structure and
light precipitation. Conversely, the relatively lower frequency of the Ka-band radar allows
for partial penetration of clouds and precipitation, facilitating the accurate measurement of
light-to-heavy precipitation. The integration of these two radar bands yields complemen-
tary information, fostering a more comprehensive understanding of precipitation cloud
characteristics. Notably, NASA’s Aerosol/Cloud/Ecosystems (ACE) mission incorporates
dual-band and dual-polarization modes in the W and Ka bands to enhance the functionality
and performance of cloud radar [14,15]. Currently, China has successfully launched its
first spaceborne precipitation radar, and the National Satellite Meteorological Center is
planning the deployment of a cloud measurement satellite. The primary payload under
consideration for this initiative is a W- and Ka-band measurement radar [16].

In this paper, we compare and synthesize precipitation data obtained by CPR-KaPR
coincidence datasets. To begin with, we match the precipitation observations from both
radars in terms of space and time. Next, we compare the differences in precipitation
measurement between the two radar systems, including radar reflectivity, as well as the
spatial distribution and intensity of the near-surface precipitation rate with different phases.
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Finally, we synthesize the radar data from the two bands to obtain a more complete and
comprehensive vertical structure of precipitation.

2. Data and Matching Methods

2.1. CloudSat CPR Data

The CloudSat satellite carries the most widely used spaceborne cloud radar, known as
millimeter-wave cloud profiling radar (CPR). CPR is a W-band radar that is pointed toward
the nadir and has a minimum detectable signal of approximately −29 dBZ. The radar
footprint size is 1.7 km along-track and 1.4 km cross-track, while the vertical resolution is
about 500 m [17,18].

In this study, we utilize radar bin data with a cloud mask value of 40, indicating a
high confidence level in cloud identification [19,20]. The retrieval process for near-surface
precipitation rates accounts for factors such as radar beam attenuation, multiple scattering
effects, and precipitation identification in the ground clutter region (the five lowest radar
bins above the surface, approximately 1.2 km) [21]. Retrieval of near-surface precipitation
rates relies on radar reflectivity and the estimated value of path-integrated attenuation
(PIA), which are determined based on surface reflectance characteristics. However, due to
the complex nature of land surface reflectance compared to that of the ocean, retrieval of
precipitation data over land surfaces is not feasible [22].

For snowfall products, the backscattering characteristics of snow particles are calcu-
lated using a combination of the original model for small particles and an aggregation
model for large particles [23]. Assuming an exponential particle size distribution for snow,
the slope and intercept parameters of the particle size distribution are obtained through the
application of the optimal estimation method [24]. This optimization method minimizes
a cost function that represents the weighted sum of differences between simulated and
observed radar reflectance, as well as the disparities between prior and estimated micro-
physical properties of snow. Ultimately, the retrieved particle size distribution parameter
curve allows for the derivation of snowfall estimates.

For this research, we used a variety of parameters, such as the radar reflectivity factor,
cloud scene, near-surface rain rate, snowfall rate, and others. These parameters were
derived from the 2B-GEOPROF, 2C-PRECIP-COLUMN, and 2C-SNOW-PROFILE products.
These products were specifically extracted from the CloudSat Version 5 data release by the
CloudSat data team in 2019.

2.2. GPM KaPR Data

The GPM is a new generation of precipitation observation program following the
TRMM. Its core satellite carries two instruments for measuring precipitation: the GPM
Microwave Imager (GMI), and the DPR. One goal of the DPR is to measure light-to-
heavy precipitation using Ka-band (35.5 GHz) radar (KaPR) and Ku-band (13.6 GHz)
radar (KuPR) [25]. This study uses KaPR HS-mode data because the Ka-band HS mode
is more sensitive than that of the Ku-band. In addition to detecting more occurrences
of light precipitation, it can also detect more clouds. The scanning angle range of the
KaPR antenna is ±8.5◦, the vertical resolution is 500 m for KaHS, the scanning width
is 120 m, and the spatial resolution is 5 km. The minimum detectable reflectivity of KaPR is
10.40 dBZ, corresponding to the minimum detectable precipitation rate of 0.16 mm/h [26].
The technical indicators of KaPR and CPR are shown in Table 1.

The Ka-band data used in this paper were the standard 2A-DPR High-Sensitivity Mode
(HS) product of GPM DPR L2 version 7, which were obtained by attenuation correction
and non-uniform filling correction based on level L1 base data [26].
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Table 1. Brief description of CPR and KaPR.

Instrument CloudSat CPR GPM KaPR

Launch time 18 April 2006 27 February 2014
Inclination angle (◦) 98.23 65

Altitude (km) 705 407
Frequency (GHz) 94 35

Vertical resolution (m) 500 500 (KaHS)
Along-track resolution (km) 1.7 5
Cross-track resolution (km) 1.4 5

Minimum detectable Ze (dBZ) −29 10.40 (KaHS)

2.3. Data Matching and Coincidence Data Processing

Before comparing the datasets generated by the two radar systems, a requirement
lies in the alignment and time synchronization of their measurements. Within this context,
the term “coincident event” assumes paramount importance, signifying a conjunctive
occurrence of radar pixels. The critical criterion for a coincident event hinges upon time
and location, stipulating that the coincidence between the footprints of the two radar
systems must be within 15 min. To initiate this process, it is imperative to query the
KaPR data associated with the footprint, within the specified 15-min window, predicated
upon the transit time of the CPR. In instances where the trajectories of the footprint
indeed coincide, recourse should be made to the nearest-neighbor methodology [27]. This
approach facilitates the judicious amalgamation of the two radar datasets, thereby yielding
the coveted CPR-KaPR coincidence data. The time difference threshold of 15 min has very
little impact on the accuracy of the statistical results [28]. We chose 15 min by considering
the trade-off between the number of samples and the time difference and statistical accuracy.

Following the spatiotemporal matching methodology delineated earlier, it can be
discerned that, due to the superior footprint resolution exhibited by the CPR as compared
to the KaPR, multiple observations of the footprint by the CPR are found to correspond
to a single footprint observation by KaPR, as visually illustrated in Figure 1a. To rectify
this disparity and establish a one-to-one correspondence between the CPR and KaPR pixel
values, a resampling procedure was executed along the trajectory of the CPR orbit. Under
the assumption of a uniform distribution of cloud features along the direction of the CPR
orbit, the pixel values of the CPR data were spatially averaged within each corresponding
KaPR pixel. In this manner, the mean values encompassing C2 to C4 correspond to C1′,
while the mean values spanning C5 to C8 correspond to C2′. For the value of KaPR
footprints, Kn = Kn′. KaPR footprints designated with primed symbols in Figure 1b serve
the purpose of distinguishing data before and after the resampling process. The post-
resampling dataset maintains parity with the KaPR dataset in terms of volume, and it is
visually depicted in Figure 1b.

Following the rigorous data resampling process, a substantial dataset comprising a
total of 310,095 sets of CloudSat CPR and GPM KaPR coincident events was successfully
collated, spanning from March 2014 to December 2017. Within this illustrative represen-
tation, the dots serve to delineate the trajectory of the coincident orbit, with the depth
of color encoding the corresponding coincident frequency, as shown in Figure 2. It is
imperative to underscore that, owing to the disparate inclination angles governing the
orbits of the two satellites, a notable variation in coincident frequency can be discerned
across distinct latitudinal bands. Notably, within the geographical expanses spanning
55 to 67 degrees (north and south latitudes), the coincident frequency registers a notewor-
thy augmentation, ranging from 50% to an impressive 800% higher than observed at other
latitudinal coordinates.
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Figure 1. Resampling diagram ((a): data before resampling, (b): data after resampling).

Figure 2. Footprints of CPR and KaPR coincident events between March 2014 and December 2017.

3. Results

3.1. Comparison of Reflectivity

Radar systems operating in distinct bands exhibit differences in their precipitation mea-
surements. These disparities arise from the frequency-dependent nature of precipitation’s
microphysical characteristics, leading to differential scattering or absorption responses
among radars operating in dissimilar frequency ranges. Through a comparative analy-
sis of radar reflectivity across various frequency bands, it becomes possible to discern
and investigate the sensitivity differentials exhibited by radars in response to different
precipitation types.

In this study, the classification of precipitation phases within the study area relied upon
the near-surface precipitation phase parameters from the KaPR. Specifically, footprints
wherein both the CPR and the KaPR detected liquid-phase precipitation were designated as
“rainfall footprints”. Conversely, those footprints characterized by solid-phase precipitation
were categorized as “snowfall footprints”. When KaPR could not identify near-surface
precipitation due to sensitivity reasons, we chose to trust CPR’s precipitation phase iden-
tification. After identification, a total of 12,126 rainfall footprints and 14,737 snowfall
footprints were selected. Given the greater precision of KaPR in discerning the bright band
phenomenon, the classification of rain types within the rainfall footprints primarily hinges
on the near-surface rain type parameters obtained from KaPR. Footprints identified by
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KaPR as indicative of convective rainfall were designated as “convective rainfall footprints”.
Subsequently, those footprints identified by KaPR as representing stratiform rainfall were
categorized as “stratiform rainfall footprints”. This classification process yielded a final
count of 4670 convective rainfall footprints and 7456 stratiform rainfall footprints.

Figure 3 presents a two-dimensional probability distribution diagram illustrating
the radar reflectivity–height relationship for convection, stratiform rainfall, and snowfall
during intersecting events observed by the CPR and the KaPR. Figure 3a–c depict the
radar reflectivity–height profiles for CPR convection, stratiform rainfall, and snowfall,
respectively. Subsequently, Figure 3d–f display the two-dimensional probability distri-
bution images of radar reflectivity–height for KaPR convection, stratiform rainfall, and
snowfall, respectively. In these representations, the abscissa denotes the radar reflectivity,
the ordinate signifies the altitude, and the color mapping indicates the probability of ob-
serving a particular radar reflectivity at a given altitude in different precipitation types.
The figure reveals distinctive patterns among the precipitation types. In convective rainfall,
most CPR reflectivity between altitudes of 1.5 and 5 km exhibits a decreasing trend as
altitude decreases, reflecting the presence of larger liquid particles with more pronounced
attenuation of W-band radar waves. Conversely, most KaPR reflectivity gradually increases
with decreasing altitudes during convective rainfall. For stratiform rainfall, both CPR and
KaPR reflectivity between altitudes of 1 and 4 km remains relatively stable. CPR reflectivity
primarily falls within the range of 7–12 dBZ, while KaPR reflectivity is predominantly dis-
tributed between 16–21 dBZ. This phenomenon arises from the stable intensity of stratiform
rainfall and the larger size of liquid particles compared to convective rainfall.

Figure 3. Reflectivity–height two-dimensional (2D) probability distribution of convective rain, strati-

form rain, and snow in CPR-KaPR coincidence ((a): CPR convective rain; (b): CPR stratiform rain; (c):

CPR snow; (d): KaPR convective rain; (e): KaPR stratiform rain; (f): KaPR snow).

Furthermore, the figure highlights variations in the two-dimensional probability
distribution images between snowfall and rainfall, with CPR exhibiting more pronounced
characteristics compared to KaPR. This divergence can be attributed to the higher frequency
of the W band, which results in greater scattering efficiency in smaller water droplets
and ice crystals. Such small particles are prevalent during snowfall, contributing to the
broader radar reflectivity–height distribution exhibited by CPR during snowfall events.
Consequently, W-band radar can offer more detailed structural information regarding
snowfall events.

Regarding echo height, the average echo-top heights observed in convective rainfall,
stratiform rainfall, and snowfall were as follows: for the CPR, they measured 7.56 km,
8.16 km, and 6.70 km, respectively, whereas for the KaPR, the average echo-top heights
were 3.92 km, 4.11 km, and 3.08 km, respectively. Notably, the average echo-top heights
detected by CPR exceeded those detected by KaPR, by approximately 3.6 to 4.2 km on
average. This discrepancy arises due to CPR’s superior resolution, which enables it to
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detect smaller cloud particles and provides a more comprehensive vertical profile of cloud
particle information.

Figure 4 displays the average radar reflectivity profiles for convective rainfall, strati-
form rainfall, and snowfall during the coincident event. The horizontal error bars in the
figure are one standard deviation of the average radar reflectivity at each corresponding
altitude. The observations reveal distinct performance in different regions:

1. In the lower region, below 1 km altitude, within convective rainfall, both CPR and
KaPR exhibit a gradual increase in average reflectivity with decreasing altitude. This
phenomenon arises due to the relatively lower attenuation of W-band radar waves in
this region compared to the increase in the detection values.

2. In the altitude range of 1.5 to 5 km, the reflectivity for most CPR observations within
convective rainfall exhibits variations with altitude, while KaPR observations show
the opposite trend. This difference can be attributed to the substantial attenuation of
W-band radar waves, which is more pronounced than the corresponding increase in
detection values in this altitude range.

3. Within stratiform rainfall, the CPR average reflectivity initially increases and then
decreases as the altitude rises between 1 and 3 km. In contrast, the KaPR reflectivity
gradually decreases with increasing altitude in the same altitude range. This behavior
can be attributed to the greater attenuation of W-band radar by liquid particles
between 1 and 3 km, resulting in a reduction in the average reflectivity. While Ka-
band electromagnetic waves also experience attenuation, their average attenuation is
less pronounced than the corresponding increase in reflectivity. Hence, the average
profile value for CPR gradually decreases with decreasing altitude, whereas the
average profile value for KaPR increases with decreasing altitude.

4. In the case of snowfall, the average reflectivity profile of the CPR exhibits more pro-
nounced variations with height compared to that of the KaPR, with a notable peak
occurring near the altitude of 10 km. This divergence can be attributed to the height-
ened sensitivity of the W band, which enables the CPR to detect more detailed snow
features that fall below the detection threshold of the KaPR. Consequently, the CPR
reveals more gradients in reflectivity, offering a more comprehensive characterization
of snowfall particle features.

Figure 4. Average profiles of radar reflectivity for convective rain, stratiform rain, and snow in CPR

and KaPR coincident events.

From Figures 3 and 4, we contend that the reflectivity measurements by cloud and
precipitation radars operating in different bands can effectively complement one another.
The W-band radar, with its higher spatial resolution and sensitivity, can provide light
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precipitation and cloud structure details, whereas the Ka-band radar excels in its ability to
mitigate signal attenuation, allowing it to penetrate thick cloud cover and measure light-to-
high precipitation. By comparing the radar reflectivity from the two bands, we found that
the joint measurements are complementary and can expand the vertical structure range
of precipitation clouds. Considering the continuity of precipitation, future advancements
in precipitation algorithms could benefit from incorporating additional upper-level cloud
information as constraints in the precipitation estimation process.

3.2. Comparison of Near-Surface Precipitation

In addition to assessing the vertical structure measurement of the two radars, it is es-
sential to conduct a global-scale comparison of the near-surface precipitation data retrieved
by them. This comprehensive evaluation will provide insights into their capabilities for
assessing and monitoring precipitation across various regions and varying intensity levels.

3.2.1. Comparison of Rain Rates

In the comparison of near-surface rain rates, it is crucial to consider that the retrieval
process for near-surface precipitation using the CPR takes into account factors such as
attenuation and multiple scattering effects of radar beams, as well as the identification
of precipitation in areas with ground clutter. This retrieval process involves utilizing
data related to near-surface radar reflectivity and surface reflection characteristics. Path-
integrated attenuation estimates are then employed to retrieve near-surface rain rates. Due
to the inherent complexity of land surface albedo in contrast to the ocean, it is not feasible
to retrieve precipitation data over land surfaces. Consequently, our comparison is limited
to the assessment of ocean surface rainfall data retrieved by both radar systems.

For statistical purposes in the coincident event, all footprints reporting rain were
selected, as it is important to note that the CPR can detect rainfall of lower intensity
compared to the KaPR. Consequently, there may be instances where the CPR detects
rainfall while the KaPR does not, resulting in cases where the CPR has a non-zero retrieval
value while the KaPR records a value of 0 for near-surface rain rate.

To assess the performance of the two radars in rainfall estimation across diverse
global regions, Figure 5 presents the average near-surface rain rate distribution based
on coincident events observed by the two satellite-borne radars. The resolution for this
analysis is 5 degrees * 5 degrees. Specifically, Figure 5a,b illustrate the average near-surface
rain rate distributions for CPR and KaPR, respectively. Figure 5c depicts the distribution
of the average near-surface rain rate differences between the two radars. The boxplot of
the average near-surface rain rate between the two radars, with 40 degrees latitude as the
boundary, is shown in Figure 5d.

The findings reveal that, within the latitudinal range of 40 degrees north and south,
the average near-surface rainfall retrieved by KaPR is 0.4 mm/h greater than that retrieved
by CPR. Conversely, above 40 degrees north and south, the average value retrieved by CPR
surpasses KaPR by 0.1 mm/h. This variation suggests that, at low latitudes, the impact of
heavy rainfall is more pronounced, leading to greater attenuation of CPR’s electromagnetic
waves. Consequently, CPR may struggle to accurately estimate rainfall exceeding its upper
threshold, resulting in a lower average rainfall retrieval compared to KaPR. In addition
to the fact that the probability of heavy precipitation events at high latitudes is smaller
than that at low latitudes, as the latitude increases, the sampling frequency gradually
increases, and the proportion of cases where there is a large difference in the retrieval
values between the two also decreases. At high latitudes, there is a prevalence of medium-
and small-intensity rainfall events compared to mid-latitudes. CPR’s heightened sensitivity
allows it to detect 15% more rainfall than KaPR in such conditions.
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Figure 5. Average near-surface rain rate distribution based on coincident events ((a): CPR, (b): KaPR,

(c): average near-surface rain rate difference between the two, (d): boxplot of the average near-surface

rain rate between the two).

After comparing the rainfall detection capabilities of the two radars across different
regions, we proceeded to evaluate their performance in near-surface rainfall of varying
intensities. We selected footprints with rainfall retrieval values from both radar systems for
this comparison. Figure 6a presents a scatter probability distribution of the near-surface
rainfall rates observed by the CPR and the KaPR during coincident events. The majority of
the rainfall events detected by both radar systems fall within the range of 0.2 to 1 mm/h.

Figure 6. (a) CPR and KaPR near-surface rain rate scatter probability distribution and (b) convective

and stratiform rain rate difference frequency distribution (∆rain rate = KaPR rain rate—CPR rain rate).

To quantify the agreement between the two radar systems in terms of near-surface
rain rate, we calculated the correlation coefficient (CC) and the root-mean-square error
(RMSE) for the inversion results. The overall correlation coefficient for the near-surface rain
rate retrieved by both radars was 0.4, while the root-mean-square error was 2.18 mm/h.
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These metrics suggest a moderate level of correlation and an average level of agreement
between the near-surface rain rate estimates obtained from the two radar systems.

To analyze the differences in the near-surface rain rate values simultaneously retrieved
by both radars, we categorized these differences based on whether the precipitation was
convective or stratiform. Subsequently, we compiled and tabulated the frequency distribu-
tion of the differences between the near-surface rain rates derived from the CPR and the
KaPR, as illustrated in Figure 6b.

Figure 6b reveals that the differences in near-surface rainfall between the CPR and
KaPR follow a Gaussian distribution. Specifically, during convective rainfall events, the
KaPR tends to produce higher values compared to the CPR. In contrast, during stratiform
rainfall events, the differences between the two radar systems follow a standard normal
distribution with a mean of zero.

We attribute these findings to the characteristics of convective and stratiform pre-
cipitation. In convective rainfall, precipitation cloud clusters are typically thicker, and
near-surface precipitation particles tend to be larger. The CPR near-surface rain rate al-
gorithm may underestimate the attenuation of W-band radar waves in such conditions,
resulting in lower average near-surface rain rate estimates compared to KaPR.

On the other hand, stratiform rainfall tends to be more stable. In these conditions,
the attenuation of W-band radar waves is less pronounced compared to convective rain-
fall. While W-band electromagnetic waves do experience substantial attenuation in cases
of heavy stratiform rainfall, they may provide more accurate estimates of near-surface
rain rates during periods of lower-intensity precipitation. Hence, for stratiform rainfall,
differences between the two radars tend to conform to a standard normal distribution.

Numerous factors contribute to the disparities in near-surface rain rate retrieval be-
tween the CPR and the KaPR. These encompass distinct retrieval algorithms employed
by the radars, as well as the influence of radar electromagnetic wave refraction and multi-
ple scattering phenomena during the detection process. CPR and DPR employ different
microphysical assumptions and retrieval algorithms, which is also an important factor influ-
encing differences in rain rate. Based on the comparison of reflectivity and near-surface rain
rate between the two radars, due to the attenuation of CPR, the difference in near-surface
rain rate may also be related to the change in reflectivity in the vertical direction.

To illustrate the relationship between the change in reflectivity in the vertical direction
and near-surface rainfall, we introduced a parameter linked to the gradient of the radar
reflectivity. When the radar reflectivity within this frequency increases with decreasing
altitude, a value of 1 is assigned to the bin, while a value of −1 is assigned when the
reflectivity decreases with altitude. This procedure enables the derivation of the radar
reflectivity gradient profile specific to the precipitation cloud within this frequency. The
gradient profile difference across the entire precipitation cloud was computed by subtract-
ing the radar reflectivity gradient profiles of KaPR and CPR. Figure 7a provides a schematic
diagram depicting this process.

Figure 7. (a) Schematic diagram of the gradient profile difference of KaPR and CPR radar reflectivity

of precipitation clouds, and (b) the boxplot of the delta near-surface rain rate and amount of bins

whose gradient difference is 2 within the column.
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When the radar reflectivity of both radars exhibits the same trend as altitude decreases,
the resulting profile difference is 0. However, during heavy rainfall, the KaPR reflectivity
gradually increases with decreasing altitude, while the CPR reflectivity undergoes atten-
uation due to raindrop particles, leading to a gradual decrease with decreasing altitude.
Consequently, the profile difference reaches a value of 2. We proceeded to tally the num-
ber of data bins where the difference between the radar reflectivity gradient profiles of
precipitation clouds derived from KaPR and CPR equaled “2”. This count is presented in
Figure 7b, in the form of a boxplot, alongside the near-surface rain rate difference.

The boxplot reveals that when the amount of bins exhibiting a difference of “2”
surpasses or equals six within the column, the average near-surface rain rate retrieved by
CPR is smaller than that obtained by KaPR. When the count of bins with a profile difference
equal to “2” reaches or exceeds 10, CPR consistently yields smaller average near-surface
rain rates compared to KaPR. Additionally, the average near-surface rain rate difference
varies commensurately with the count of bins exhibiting a profile difference of “2”. These
findings underscore that, at a certain level of rainfall rate, the attenuation of W-band radar
waves cannot be accurately estimated, resulting in the underestimation of the near-surface
rain rate by CPR.

3.2.2. Comparison of Snowfall Rates

Snowfall is the meteorological phenomenon characterized by the descent of ice crystals
from the atmosphere to the Earth’s surface, forming snow. This process signifies the atmo-
spheric transfer of water to the surface, constituting an integral component of the natural
water cycle [29]. In the context of precipitation comparisons, it is important to conduct a
global-scale evaluation of near-surface snow rates retrieved by the two radar systems.

The average distribution of near-surface snow rates retrieved by the CPR and the KaPR
is illustrated in Figure 8a,b, respectively. Meanwhile, Figure 8c displays the distribution of
the average near-surface snow rate difference between the two radar systems. The boxplot
of the average near-surface snow rate between the two radars, with 50 degrees latitude as
the boundary, is shown in Figure 8d. It is noteworthy that the CPR snow rate algorithm
truncates the reflectivity profile at an altitude of approximately 1 km to mitigate the impact
of ground clutter [30]. Consequently, in regions characterized by terrain-related factors
between 30 and 50 degrees (north and south latitudes), CPR’s inversion values tend to be
lower than those of KaPR. Figure 8c illustrates this phenomenon, with specific regions such
as the Tibetan Plateau in mainland China, the Rocky Mountains in the Western United
States, and the Cordillera Mountains in South America exhibiting lower near-surface snow
rate inversion values for CPR compared to KaPR. However, CPR’s heightened sensitivity
enables it to detect a greater number of snowfall events than KaPR in areas with latitudes
exceeding 50 degrees, accounting for 86% of the total snowfall events.

The discrepancy in radar wave frequencies results in a deviation of several hundred
meters in the selected sampling heights for the two near-surface snow rate algorithms near
the ground. Therefore, KaPR tends to yield higher snow rates, attributed to terrain-related
factors, compared to CPR. Nevertheless, CPR’s advantage in terms of high sensitivity
allows it to detect more snowfall events in high-latitude regions than KaPR.

Apart from terrain-related factors, as shown in Figure 8d, the average near-surface
snow rate retrieved by KaPR in areas below 50 degrees (north and south latitudes) exceeds
that of CPR by 0.2 mm/h. Conversely, in regions above 50 degrees (north and south
latitudes), the average near-surface snow rate retrieved by CPR surpasses that of KaPR by
0.1 mm/h. This discrepancy arises because CPR detects 45% more light snow events (with
intensities in the order of 0.01 mm/h) than KaPR in regions above 50 degrees (north and
south latitudes).
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Figure 8. Average near-surface snow rate distribution based on coincident events of two spaceborne

radars ((a): CPR, (b): KaPR, (c): difference in average near-surface snow rate, (d): boxplot of the

average near-surface snow rate between the two).

4. Precipitation Synthesis from CPR and KaPR

The comparative analysis of near-surface precipitation between the two radar systems
reveals that CPR excels in detecting weaker precipitation compared to KaPR. For heavier pre-
cipitation, the W-band radar waves experience attenuation, leading to an underestimation of
precipitation by CPR. The KaPR has the advantage in detecting light-to-heavy precipitation.

Combining the near-surface precipitation data retrieved by both radar systems in-
volves considering instances where one or both radars retrieve near-surface precipitation.
In cases where both radars detect near-surface precipitation simultaneously, the maximum
value is selected for inclusion in the statistics, resulting in a maximum near-surface rain
rate dataset. The frequency distribution statistics of near-surface precipitation rates in
coincident events for both radar systems are presented in Figure 9.

Figure 9. Frequency distribution of near-surface precipitation rates of CPR and KaPR coincident events.
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In Figure 9, the x-axis indicates the precipitation rate, while the y-axis indicates the
occurrence frequency. The blue and orange lines indicate the frequency of precipitation at
different intensities detected by CPR and KaPR, respectively. The black lines indicate the
near-surface precipitation rates obtained from the maximum combination of the two radar
datasets. The observed trends in Figure 9 are as follows:

1. In the precipitation rate range of 0.01–0.2 mm/h, KaPR, due to its sensitivity limita-
tions, is unable to detect precipitation within this range.

2. In the rate range of 0.2–8 mm/h, as precipitation rate increases, the near-surface
rain rate retrieved by the CPR gradually underestimates, leading to a decrease in
the proportion of CPR-detected precipitation and an increase in the proportion of
KaPR-detected precipitation.

3. When the precipitation rate exceeds 7 mm/h, the values retrieved by CPR are smaller
than those retrieved by KaPR.

This analysis demonstrates that the combined detection of near-surface precipitation
by both radar systems allows for a more complete detection of precipitation, with rates
ranging from 0.01 to 40 mm/h or higher levels.

In addition to the synthesis of near-surface precipitation, we also synthesized reflectiv-
ity cross-sections to better represent the vertical structures of precipitation clouds. Based
on the previous analysis of the comparison of reflectivity, near-surface precipitation, and
the reflectivity gradient, we adopted a weighted synthesis method associated with the
reflectivity gradient difference to synthesize the reflectivity in the vertical cross-sections.
Figure 10 illustrates the flowchart of synthesizing radar reflectivity from both radars. The
following steps outline this synthesis procedure: Firstly, import both radar datasets and
subject them to quality control measures. Secondly, calculate the vertical gradient of the
radar reflectivity for each footprint. In this calculation, assign a value of 1 to the bin gradient
where the radar reflectivity increases with decreasing altitude. Conversely, assign a value of
−1 to the radar bin gradient where the radar reflectivity decreases with decreasing altitude.
Thirdly, subtract the gradient value of the W band from the gradient value of the Ka band to
derive the gradient difference for each bin. Since the reflectivity of the two radars changes
differently as the altitude decreases, the value of the gradient difference of each bin may be
any integer between the values of −2 and 2. When bins with a gradient difference equal to
2 appear continuously within a footprint, it means the occurrence of precipitation above
the CPR measurement threshold. We assigned a synthetic weight factor “k” to each bin
based on the total number of gradient differences equal to 2 in the vertical direction of the
footprints. It can be seen from Figure 7b that when the total number of bins with a gradient
difference equal to 2 in the footprints reaches 10, the precipitation rates estimated by CPR
are smaller than those estimated by KaPR. When bins with a gradient difference equal to 2
appear continuously, the “k” of the top bin is assigned a value of 0.9. Then, “k” decreases
in height by 0.1 with each successive bin featuring a gradient difference equal to 2, until
reaching a value of 0. Finally, the composite reflectivity is obtained from both frequencies
with a weighted average method incorporating the gradient information.

Due to scattering differences caused by different bands, the synthesis process involves
simulating the scattering of electromagnetic waves in both the W and Ka bands when
interacting with solid, mixed, and liquid particles. This step refers to the simulation
method in Kou’s [31] work, but the types of particles are not divided in detail in this
synthesis. We simply classified particles into ice, mixed, and liquid. The “Ice” bins were
referenced to cloud ice for scattering simulation, the “mix” bins were referenced to wet
snow for scattering simulation, and the “liquid” bins were referenced to raindrop particles
for scattering simulation. This simulation helped establish the conversion relationship
of radar reflectivity between the W and Ka bands. Subsequently, based on the phase
parameters provided by KaPR, the reflectivity factor ZeW in the W band was converted to
the Ka-band radar reflectivity factor ZeW-Ka.
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Figure 10. Flowchart of CPR and KaPR reflectivity synthesis.

The final step in this process is the calculation of the composite reflectivity Zecombine for
each bin, incorporating the composite weight factor k. Specifically, when only a single radar
detects clouds within a bin, the reflectivity factor value of that radar is used. Conversely,
when both radars detect clouds simultaneously, the synthesized reflectivity Zecombine

is employed.
Figure 11 depicts the radar reflectivity cross-sections from a CPR and KaPR coincident

event that occurred on 28 July 2016, over the Baltic Sea. The weather background at
that time was that the atmospheric stratification was stable, the humidity in the lower
atmosphere was high, and the vertical movement of the atmosphere was weak. The figure
includes the original and combined reflectivity cross-sections and their average profiles.

Figure 11. CPR and KaPR reflectivity and their synthesized cross-sections; average reflectivity of

coincident case 1 ((a): CPR reflectivity cross-section, (b): KaPR reflectivity cross-section, (c): gradient

difference in reflectivity of the two radars, (d): synthesis of two radar reflectivity cross-sections,

(e): average profiles for CPR, KaPR, and synthesized reflectivity).
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The observations from this precipitation case reveal a distinct bright band at an al-
titude of 3 km, indicating stratiform precipitation. The radar reflectivity values for CPR
and KaPR are presented in Figure 11a,b, respectively. The precipitation cloud information
detected by CPR is 48.86% more than that detected by KaPR. Both radars effectively mea-
sure precipitation in the 3–5 km altitude range. However, below 3 km, notable differences
emerge in the reflectivity between the two radars. CPR experiences attenuation due to
raindrop particles, hindering its ability to accurately indicate the location of strong echoes.
Conversely, KaPR provides a clearer depiction of strong echoes below 3 km. The reflectivity
gradient difference diagram in Figure 11c confirms that, below 3 km, the reflectivity of the
two radars exhibits opposite trends as the altitude decreases. Figure 11d,e display the syn-
thesized reflectivity and average profiles from both radars. Combining data from both radar
frequencies allows for a comprehensive representation of the cloud/precipitation structure.
The smaller ice particles at the top of the cloud system exhibit minimal attenuation of
the W band, with the difference between the band conversion and the original reflectivity
staying within 0.5 dB. As the moisture content increases below 5 km, the attenuation of the
W band by precipitation particles gradually intensifies. Consequently, the weight of the
KaPR reflectivity in the synthetic profile also increases gradually, bringing the synthesized
reflectivity closer to the measured value in the Ka band.

Figure 12 illustrates the radar reflectivity cross-sections from a CPR and KaPR co-
incident event that took place on 13 June 2016, along the Gulf Coast of Louisiana, USA.
The precipitation in this case extended up to 15 km in altitude, indicating a convective
precipitation. The radar reflectivity values for CPR and KaPR are displayed in Figure 12a,b,
respectively. CPR detected more precipitation cloud information than KaPR, accounting
for 48.83%. Strong precipitation was observed in the area below 5 km, specifically between
93.5 and 93.6 degrees west. In this region, the CPR electromagnetic waves experience
substantial interference and attenuation. Conversely, KaPR reflectivity provides a more
accurate characterization in this region.

Figure 12. CPR and KaPR reflectivity cross-sections, and their synthesized cross-sections, for coin-

cident case 2 ((a): CPR reflectivity, (b): KaPR reflectivity, (c): gradient difference in reflectivity of

the two radars, (d): synthesized reflectivity cross-section, (e): average profiles for CPR, KaPR, and

synthesized reflectivity).

A yellow area is evident in the W-band reflectivity near the 14 km altitude in Figure 12a.
Above 10 km altitude, there may be a vigorous upward motion, causing the air within the
precipitation system to rise rapidly to around 14 km and then cool rapidly. This process
leads to the continuous condensation and growth of ice particles, resulting in larger ice
crystals. These larger ice crystals generate strong radar wave reflections. A similar feature
can also be observed near 14 km in the average radar reflectivity factor profile in Figure 12e,
culminating in a peak.
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Figure 12d shows the synthesized reflectivity from case 2, obtained by combining
data from both radars. This synthesis yields a comprehensive representation of the
cloud/precipitation structure, allowing for a more comprehensive assessment of the cloud
characteristics associated with convective precipitation.

Data from the Level 2B GPM Combined Radar–Radiometer Precipitation Algorithm
(2BCMB) were used to verify the synthesized results. The 2BCMB precipitation algorithm
integrates Level 2 calibrated reflectivity profiles from the DPR and Level 1C GMI bright-
ness temperatures. An a priori database of particle size distributions and corresponding
environmental conditions was used to accurately retrieve precipitation data [32].

To demonstrate the performance of the synthesized reflectivity cross-section, we used
the Spearman rank correlation coefficient between the 2BCMB precipitation rate and the
radar reflectivity to analyze the performance of the synthesis. There is a relationship
between the precipitation rate and radar reflectivity, because radar reflectivity is usually
used to describe the intensity of scattering of radar waves by particles in the atmosphere
(such as raindrops, snow, etc.). High radar reflectivity is generally associated with greater
precipitation rates, and the Spearman rank correlation coefficient works for the monotonic
relationship [33].

The Spearman rank correlation coefficient parameters (rs) are defined as follows:

rs = 1 −
6∑

n
i=1 d2

i

n(n2 − 1)

where n is the number of bins with radar echo values, while di is the grade difference
between the radar reflectivity and precipitation rate. The statistical quantitative comparison
results are shown in Table 2.

Table 2. The statistical quantitative comparison results for case 1 and case 2.

KaPR Combined

Case 1

Ice phase 0.8035 0.8956
Mixed phase 0.8153 0.8989
Liquid phase 0.9231 0.9028

Case 2

Ice phase 0.6058 0.6750
Mixed phase 0.5863 0.6453
Liquid phase 0.4177 0.5110

From the comparison results of the stratiform and convective cases shown in Figure 13,
we can see that the stratiform case has better consistency. The rs for stratiform rain reached
0.8 for all three kinds of phase particles. Compared to stratiform precipitation, convective
precipitation is usually generated under unstable atmospheric conditions. The rs for
convective rain reached only about 0.4~0.6 for the three kinds of phase particles. From the
comparison of the rs before and after synthesis, as shown in Table 2, whether in stratiform
or convective precipitation, the results of the non-liquid-phase bin are better, and the rs

values of the ice phase and mixed phase are increased by 12% and 10%, respectively. The
DPR data, combined with data from GMI, contribute to more accurate precipitation rate
estimates. With the addition of the W band, the synthesized reflectivity in the non-liquid-
phase bin has a better correlation with the more accurate precipitation rate retrieval in
2BCMB. The addition of W-band radar can play a positive role in the non-liquid-phase
radar bin. The synthesis results are better in the ice-phase bin than in the mixed-phase bin.
There are many types of precipitation particles in the mixed-phase bin, and the estimation
of radar reflectivity is not accurate enough.
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Figure 13. Scatterplots between the 2BCMB precipitation rate and KaPR reflectivity; synthesized

reflectivity in different phases for cases 1 and 2 ((a): ice phase in case 1, (b): mixed phase in case 1,

(c): liquid phase in case 1, (d): ice phase in case 2, (e): mixed phase in case 2, (f): liquid phase in case 2).

5. Discussion

This study compares and synthesizes the precipitation data from the coincidence
of CPR and DPR observations, occurring within a ±15-min window, spanning from
March 2014 to December 2017. The primary objective was to assess the disparities in
radar reflectivity and precipitation rates between W- and Ka-band spaceborne radars, espe-
cially in diverse precipitation phases and varying intensities. Additionally, an attempt was
made to synthesize the precipitation data from both radars to enhance the integrity and
comprehensiveness of the precipitation information. The key findings of this investigation
are as follows:

1. Radar reflectivity comparison: In convective rainfall, the presence of larger liquid
particles leads to pronounced attenuation of W-band radar waves. Below the altitudes
of the melting layer, CPR generally exhibits a decrease in reflectivity with decreasing
altitude, while KaPR reflectivity tends to increase. In stratiform rainfall, where pre-
cipitation remains relatively stable, CPR reflectivity is predominantly found between
7 dBZ and 12 dBZ, whereas KaPR reflectivity is mainly distributed between 16 dBZ
and 21 dBZ. Regarding snowfall, there is a peak around 10 km in the CPR snowfall
average reflectivity profile, indicating that CPR can detect larger ice crystals formed
during snowfall. Due to differences in radar sensitivity, the average echo-top height
detected by CPR is approximately 3.6–4.2 km higher than that detected by KaPR,
enabling CPR to capture more detailed vertical cloud structures.

2. Near-surface precipitation rate comparison: When comparing near-surface rain rates,
the average near-surface rain rate of KaPR on the ocean surface is 0.4 mm/h higher
than that of CPR within the range of 40 degrees north and south. This could be
caused by the presence of large rainfall particles that lead to significant attenuation
of CPR’s electromagnetic waves, limiting its ability to accurately estimate rain rates
beyond its upper threshold. However, at latitudes above 40 degrees, CPR’s heightened
sensitivity allows it to detect approximately 15% more near-surface rainfall events
than KaPR, resulting in an average near-surface rain rate that is 0.1 mm/h greater
than KaPR’s. When comparing snowfall, it is important to note that for snowfall
events influenced by terrain factors between 30 and 50 degrees north and south,
CPR consistently retrieves lower values than KaPR. However, in areas with latitudes
greater than 50 degrees, CPR detected more snowfall events than KaPR, accounting
for 86% of the total snowfall events. In terms of near-surface snow rate comparisons,
KaPR retrieves an average near-surface snow rate 0.2 mm/h higher than CPR’s in
regions below 50 degrees latitude. Conversely, in areas above 50 degrees latitude,
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CPR’s sensitivity leads to the detection of 45% more light snowfall events in the
0.01 mm/h class than KaPR, resulting in an average near-surface snowfall rate that is
0.1 mm/h higher than KaPR’s.

3. Combining the near-surface precipitation rates of both radars allows for a more com-
plete detection of precipitation, with rates ranging from 0.01 to 40 mm/h or higher
levels. By synthesizing reflectivity from the CPR and KaPR, with consideration of their
vertical gradient differences, a comprehensive cloud precipitation profile can be ob-
tained. The precipitation cloud information detected by CPR but not KaPR accounted
for 49% of the total cloud bodies on matching vertical sections. This reflectivity syn-
thesis not only provides a complete view of the vertical structure of precipitation
clouds, but also enables a more continuous reflectivity of precipitation cloud bodies.
The Spearman rank correlation coefficient parameters for stratiform rain reached 0.8
for all three kinds of phase particles, while they only reached about 0.4~0.6 for the
three kinds of phase particles for convective rain. This synthesis method works better
in non-liquid-phase radar bins, whether in stratiform or convective precipitation,
and the rs of the ice phase and mixed phase are increased by about 12% and 10%,
respectively, while the Spearman rank correlation coefficient of the precipitation rate
and radar reflectivity is improved.

6. Conclusions

In this study, we compared the coincident data from CPR and KaPR from 2014 to
2017, and then a synthesis of the radar reflectivity from CPR and KaPR was attempted
to obtain a complete cloud and precipitation structure. After comparing the near-surface
precipitation rates, we found that the difference in near-surface precipitation rates between
CPR and KaPR is related to the reflectivity gradient in the vertical direction. The greater the
reflectivity gradient, the greater the difference in near-surface precipitation rates. Finally,
the radar reflectivity was weighted and synthesized from CPR and KaPR based on the
gradient difference of the reflectivity from the two radars. The results for a stratiform
cloud and a deep convective case show that the synthesis can improve the consistency of
reflectivity and precipitation rate measurements. In the future, the joint measurement of Ka
and W bands holds the potential to establish a correlation between cloud properties and
precipitation. This advancement is expected to deepen our comprehension of the cloud
precipitation process, thereby contributing to an enhanced understanding of the intricacies
involved in cloud-related precipitation phenomena. Additionally, the characteristics of
the upper cloud system reflect the intensity and development trends of the lower-level
rainfall system [34]. The combined use of the W and Ka bands offers a more objective and
rational explanation of the connection between upper-level cloud structure and lower-level
precipitation rates. Our next work will be to retrieve the precipitation rates of particles in
different phases using combined W- and Ka-band radar data.
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Abstract: Polar mesospheric cloud (PMC) data obtained from the Aeronomy of Ice in the Mesosphere

(AIM)/Cloud Imaging and Particle Size (CIPS) experiment and Himawari-8/Advanced Himawari

Imager (AHI) observations are analyzed for multi-year climatology and interannual variations.

Linkages between PMCs, mesospheric temperature, and water vapor (H2O) are further investigated

with data from the Microwave Limb Sounder (MLS). Our analysis shows that PMC onset date and

occurrence rate are strongly dependent on the atmospheric environment, i.e., the underlying seasonal

behavior of temperature and water vapor. Upper-mesospheric dehydration by PMCs is evident in

the MLS water vapor observations. The spatial patterns of the depleted water vapor correspond to

the PMC occurrence region over the Arctic and Antarctic during the days after the summer solstice.

The year-to-year variabilities in PMC occurrence rates and onset dates are highly correlated with

mesospheric temperature and H2O. They show quasi-quadrennial oscillation (QQO) with 4–5-year

periods, particularly in the southern hemisphere (SH). The combined influence of mesospheric cooling

and the mesospheric H2O increase provides favorable conditions for PMC formation. The global

increase in mesospheric H2O during the last decade may explain the increased PMC occurrence in

the northern hemisphere (NH). Although mesospheric temperature and H2O exhibit a strong 11-year

variation, little solar cycle signatures are found in the PMC occurrence during 2007–2021.

Keywords: polar mesospheric clouds; water vapor; temperature; mesosphere

1. Introduction

Polar mesospheric clouds (PMCs), or noctilucent clouds (NLCs), are Earth’s highest
clouds that occur in the summertime, at high latitudes in a narrow altitude region near
~82 km. These clouds consist of ice crystals in nanometers that are nucleated onto meteoric
particles with an ice water content (IWC) of less than 100 g/km2 [1]. The occurrence of
PMCs in the summer polar mesosphere indicates that PMC formation requires favorable
atmospheric conditions, i.e., low temperature (T) and sufficient water vapor (H2O) abun-
dance. While the mesospheric H2O supply is largely from the slow ascent of polar air in the
mean upper-atmospheric circulation, the regional temperature can be modulated by waves,
i.e., planetary waves, gravity waves (GWs), and tides originated from the lower atmo-
sphere. Different from the lower atmosphere, the wave-driven dynamic polar mesosphere
is coldest during the summer solstice. The cold mesosphere in the summer hemisphere
is a manifestation of strong dynamic forcing [2–6]. Gravity wave momentum deposition
induces a mean meridional flow from the summer to winter hemisphere, resulting in an
upward flow in the summer mesosphere and downward flow in the winter mesosphere.
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Adiabatic cooling and warming, associated with this seasonal vertical mean flow, drive
strong seasonal variations in mesospheric temperature and atmospheric tracers. Vertical
thermal structures and their relations to PMCs have been extensively studied in numerous
publications [7–10].

Upper atmosphere cooling is likely to increase from doubling CO2 radiative forc-
ing [11]. Observational and modeling studies have linked PMC changes to enhanced
ice particle production by increased CO2 cooling [10,12,13]. Linkages between increases
in PMC occurrence and brightness to climate change on different time scales have been
discussed by a number of authors [14–18]. On a centennial timescale, it has been suggested
that a H2O increase of about ~1 ppmv due to methane oxidation in the mesosphere during
the industrialization era could be one of the major contributing factors to the more frequent
occurrence of PMCs observed in recent years [19]. Since 11-year solar cycle variations can
also induce changes in PMC occurrence by modulating mesospheric T and H2O, the sensi-
tivity of PMC occurrence to the solar cycle has also been extensively investigated [20–25].
The micro-physical properties of PMCs, i.e., vapor pressure over ice and the nucleation of
mesospheric ice particles in the relevant temperature range, have also been explored with
laboratory observations in combination with detailed microphysical modeling of cloud
processes under the conditions of the polar summer mesopause [26–33].

Although PMCs have been observed for more than 120 years [34–36], observation
techniques have significantly improved in recent decades due to advanced new instruments
from the ground and rockets [37–46]. However, ground-based and rocket observations
are limited in terms of spatiotemporal coverage and unable to make consistent daily
measurements because they are often obscured by low clouds and local weather conditions.
Thus, sampling bias is a fundamental limitation in ground-based PMC observations.

Recent satellite observations of PMCs from low-Earth orbit (LEO) [47–56] and
geostationary-Earth-orbit (GEO) [57–60] have provided the needed global coverage of
PMCs with consistent temporal and spatial samplings. Sun synchronous satellite instru-
ments observe PMCs at two fixed local times from the ascending and descending orbits.
As the orbit can shift over the lifetime of the satellite, a local time shift in the observation
can affect the multi-year time series of the PMCs due to the interference of the tidal ampli-
tudes and phases with the observation times. Stable and continuous observations of PMCs
and the middle atmosphere environment are critical for understanding the variations in
PMCs, especially with their implication for long-term and/or solar cycle influences on the
mesosphere.

Beyond all the difficulties in diagnosing changes in the mesosphere, observational
evidence of the cooling trend in the mesospheric temperature can be found from Rayleigh
lidars [61] and satellite records [62–64]. The estimated decadal variability in the mesosphere
is often hampered by other large interannual fluctuations such as stratospheric sudden
warming and warming due to volcanic eruptions. Nevertheless, the observed temperature
in the middle atmosphere appears to exhibit a general cooling trend of 1–2 K/decade in
response to CO2 increase [65].

Water vapor (H2O), a highly variable greenhouse gas in the lower atmosphere, is
an important tracer of the middle atmosphere dynamics [66] and an indicator of climate
change. In contrast to its increasing trend in the past, a ~10% decrease in stratospheric water
vapor since 2000 has been reported as a potential contributing factor to the global warming
hiatus, which may have caused a slow increase in the global surface temperature [67]. A
recent analysis from Microwave Limb Sounder (MLS) and Sounding of the Atmosphere
using Broadband Emission Radiometry (SABER) observations suggests an increasing H2O
trend of 0.2–0.3 ppmv/0.1–0.2 ppmv during the last decade in the stratosphere/lower
mesosphere, respectively [13]. An anthropogenic increase in methane (CH4) [68] could
possibly drive a steady increase in H2O, since methane oxidation is a principal source of
stratospheric water vapor.

In this paper, we conduct a comprehensive study of PMC occurrence and the meso-
spheric environment for cloud formation to quantify the sensitivity of PMCs to environmen-
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tal conditions by analyzing two independent satellite PMC measurements. We characterize
the monthly and seasonal climatologies as well as year-to-year variations in PMC occur-
rence rates, as observed by the Aeronomy of Ice in the Mesosphere (AIM)/Cloud Imaging
and Particle Size (CIPS) experiment and Himawari-8/Advanced Himawari Imager (AHI).

To evaluate the PMC occurrence changes with respect to the warming climate and
altered mesospheric environment, we correlate the MLS T and H2O variations with the
PMC occurrence rates and PMC onset dates for the periods when AIM/CIPS and Himawari-
8/AHI observations are available. We also examine the interannual variations in PMCs
across 4–5-year periods (quasi-quadrennial oscillation) from 2007 to the 2021/2022 PMC
season, in conjunction with mesospheric T and H2O.

2. Data

2.1. MLS T and H2O

We use V5.0 MLS T and H2O in the present study. MLS is an instrument onboard
the NASA/Aura satellite, launched in July 2004 into a Sun-synchronous polar orbit. MLS
measures thermal microwave emissions from the Earth’s limb from 82◦S to 82◦N. The
daily temperature and H2O fields are mapped onto a 4◦ (latitude) × 8◦ (longitude) grid for
daytime (ascending) and nighttime (descending) orbits. The daily mean is estimated as
an average of the data from ascending and descending orbits. MLS observations provide
nearly global coverage (82◦S–82◦N) by passing the same location two times every day:
ascending orbit at 1:45 ± 15 PM local time and descending orbit at 1:45 ± 15 AM local
time (https://aura.gsfc.nasa.gov/scinst.html, accessed on 31 January 2023). There are
differences in the MLS T and H2O data from ascending and descending orbits [69,70],
however, averaging the data from the ascending and descending orbits does not affect the
results of the paper.

Inferred from the emissions of molecular oxygen [O2] at 118 GHz and its isotope at
239 GHz, MLS temperature measurements have a vertical resolution of ~6 km and precision
of ~2.3 K in the mesosphere [71,72]. The uncertainty due to noise and a priori information
is ~2.5 K above the mesosphere. MLS temperature measurements are recommended for
scientific use up to 0.0005 hPa (~104 km), as updated in the V5.0 data quality and description
document (https://mls.jpl.nasa.gov/data/v5-0_data_quality_document.pdf, accessed on
31 January 2023).

The H2O volume mixing ratio (VMR) is derived from the 183.3 GHz line using a
190 GHz radiometer. The typical precision values of the MLS V5.0 water vapor vary
between 0.3 and 2 ppmv over the range from 68 to 0.001 hPa with vertical resolution of
12–16 km in the mesosphere. The highest vertical level recommended for scientific use
is 316–0.001 hPa. In the comparison with the version 3.0 data from the Sub-Millimetre
Radiometer (SMR) aboard the Odin satellite, the profiles of the MLS T and H2O mixing
ratio are consistent with those of the SMR with relative differences within 5% in the lower
mesosphere [73].

2.2. MLS Relative Humidity with Respect to Ice (RHI)

The MLS relative humidity with respect to ice (RHI) product is only validated and used
for tropospheric studies [74]. The analysis of mesospheric RHI in this study is preliminary,
in which we focus mainly on its relative variations with time and altitude. As in an earlier
MLS algorithm [75], the RHI algorithm is based on the Goff–Gratch function [76] and is
recommended for use by the World Meteorological Organization (WMO). In essence, this
formula is fundamentally based on the Clausius–Clapeyron equation,

d(ln ei)

dT
=

Lice(T)
RT2

(1)
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where ei is the ice saturation pressure, Lice(T) is the latent heat of the sublimation of ice as
a function of temperature, and R is the molar gas constant. If the H2O VMR is measured,
RHI (in %) can be expressed as

RHI =
p·VMRH2O

ei
× 100 (2)

where p is the atmospheric pressure. Therefore, extension to the mesosphere would depend
primarily on the knowledge of Lice(T) in a cold environment (130 K–180 K), which is
derived from the molar heat capacities of ice and water vapor. The water vapor capacity is
approximately constant for these temperatures, whereas the ice capacity as a function of
temperature is known quite well down to 15 K. A more comprehensive review on ice and
water vapor properties can be found in [77].

In summary, the MLS RHI should contain scientifically useful measurements of H2O
saturation in the mesosphere and warrant an in-depth analysis in PMC studies. Figure 1
shows two examples of the averaged RHI profiles in the NH and SH from a 30-day period
after the 2011 solstice. Despite the coarse vertical resolution in the mesosphere, the MLS
RHI appears to reveal a high saturation level in the upper mesosphere (0.01–0.002 hPa)
with a peak near 0.005 hPa. As discussed in later sections, these periods represent the
enhanced occurrence of PMC formation in the summer polar region. This high saturation
with an RHI > 100% is consistent with the PMC-forming potential at this time of year.

Figure 1. Profiles of MLS T (K), RHI (%), and H2O (ppmv) averaged over 30 days after the 2011

summer solstice for the (a) NH and (b) SH.

2.3. AIMS/CIPS

The CIPS instrument [78] onboard the AIM satellite has been operational since May
2007. CIPS uses four UV imagers to measure the 265 nm radiation scattered by the atmo-
sphere from a ~30–85◦ latitude and completes about 15 orbits per day, crossing the equator
at 12 AM/PM local times. CIPS is a nadir-imaging instrument that utilizes a unique four-
camera design to discriminate the scattering of ultraviolet (UV) solar photons from PMC
ice particles against the background sunlit atmosphere. From 2007 through to February
of 2016, images were acquired in the summer hemisphere between the terminator and a
dayside latitude of about 40 degrees. Since 12 February 2016, images have been acquired
at all sunlit latitudes. The fundamental measurement is albedo, defined as the ratio of the
scattered radiance to the incoming solar irradiance.

In this study, we use the version 5.20, level 3c data set, which consists of orbit-by-orbit
albedos binned in 1◦ latitude bins for the entire season. We use an albedo threshold of
5 × 10−6 sr−1 to reduce false detections and determine the PMC occurrence rate. The
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occurrence rate (OR) is calculated as the ratio of the number of clouds (with albedo values
≥ 5 × 10−6 sr−1) to the number of observations. Note that PMC retrievals are not available
for the NH 2017 and SH 2017–2018 seasons due to the difficulties in accounting for the
changing orbital parameters. Detailed descriptions of the observations, algorithms, data
products, and uncertainties can be found in [79,80].

2.4. Himawari-8/AHI

Himawari-8 is a Japanese GEO meteorological satellite, operated since July 2015.
Himawari-8/AHI has 16 observation bands, including 3 visible bands: blue (0.47 µm), green
(0.51 µm), and red (0.64 µm). These visible bands can be used for PMC observations [59].
In this work, we use Himawari-8/AHI PMC occurrence rate data from 2016 to 2021 for
the NH and from 2016/2017 to 2021/2022 for the SH. The PMC data sets are produced by
the PMC detection method, which was developed in [60]. To perform the PMC detection,
the resampled optical intensity data are calculated from the full-disk HSD band-1 (blue)
images, which have 11,000 × 11,000 pixels with a time resolution of 10 min. The spatial
resolutions (or the resampled grid) of the resampled data are 1 degree in latitude and
1 km in height. Then, the PMC detections are performed for the height profiles of the
resampled intensity data at each latitude with a 10-min interval. We calculate the daily
PMC occurrence rates from the detected PMC data. The Himawari-8/AHI PMC OR data
used in this work are available with resolutions of 1 day in time and 1 degree in latitude.
More detailed information for the AHI PMC measurement can be found in [60].

3. Results and Discussion

3.1. Climatology of Mesospheric T and H2O

In this section, we investigate the climatology of the MLS T and H2O mixing ratio.
PMCs are expected to alter and to be altered by T and H2O in the summer mesopause
region. Figure 2 shows the zonal mean monthly climatology calculated from the MLS T (left
panel) and H2O (right panel) during 2005–2021 for each month of the year. The climatology
is shown for 82◦S–82◦N over the altitude range from 5 to 0.001 hPa (~37 to ~100 km). The
climatology of the middle atmosphere T from MLS clearly shows the hemispheric asymme-
try of the cold temperature minimum over high latitudes in both summer hemispheres in
the upper mesosphere (between 0.01 hPa and 0.001 hPa). Because the UV absorption by
ozone in the Hartley band near 240 nm is a major source of solar heating in the mesosphere,
the mean temperature monotonically decreases with altitude as the ozone VMR decreases.
However, additional radiative, chemical, and dynamical processes are involved in the
determination of the temperature structure near the mesopause [81]. A large amplitude of
the annual oscillation in the high latitude implies that dynamic forcing is stronger there,
compared to low-latitude zones. The summertime cold region is obvious during summer
months, extending from the upper mesosphere to below 0.01 hPa. The temperature range
for the summer mesosphere extends from 140 to 180 K in both hemispheres.

The climatology of H2O (right panel) shows a general decrease with altitude to near
the mesopause. A meridional tilt is obvious during the solstice season and the H2O mixing
ratio decreases from the summer to winter hemisphere. For a given altitude, H2O increases
with an increasing latitude, reflecting the summertime upwelling of water vapor following
the mean meridional circulation, which maximizes at high latitudes. The H2O amount
decreases with latitudes, so a H2O maximum appears at the equator during equinox. A
noticeable perturbation in the H2O field in summer high latitudes can be found in the upper
mesosphere. At a high latitude above 0.01 hPa, the H2O meridional increase slows down
and does not increase with latitude beyond 50◦N/S during the summer months. In contrast,
the summertime H2O reaches a maximum below the 0.01 hPa level. This perturbation
indicates that the summertime high-latitude H2O depletion above the 0.01 hPa level may
be linked with the formation of PMCs. The decrease in H2O above this level in the upper
polar mesosphere could be due to the photodissiation of the H2O where it is brought up
from a lower altitude by the overturning circulation as it reaches the mesopause [82]. The
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H2O below PMC level can be enhanced by the sublimation of PMCs when they release
H2O back into the surrounding environment.

Figure 2. Latitude height distribution of MLS T (K) (left panel) and H2O (ppmv) (right panel)

monthly zonal mean climatology calculated during 2005–2021.

3.2. Upper-Mesospheric Dehydration

We investigate this dehydration process in further detail with the MLS T and H2O
measurements to examine its temporal evolution and spatial distribution in connection to
PMC formation. In Figure 3, the zonal mean MLS H2O climatology (2005–2021) near the
mesopause region above 0.02 hPa is shown at a given time and latitude for the NH (left
panel) and SH (right panel). At the 0.02 hPa level, a high amount of H2O VMR i.e., a H2O
VMR greater than 6 ppmv, appeared approximately 10 to 15 days before the solstice in both
hemispheres. This high H2O concentration continues to grow and peaks at greater than
7 ppmv at 80◦N/S during the ‘core’ of PMC seasons around the summer solstice. This high
H2O amount at 0.02 hPa in high latitudes persists over the next 90–100 days and shows
equatorward propagating signals. The extent of the equatorward propagation signal is
slightly more prolonged in the SH relative to the NH, but the structure of the hemispheric
distribution of H2O VMR is quite similar.

Significant H2O depletion in the upper mesosphere (above 0.005 hPa) is evident in
the MLS climatology. This perturbation suggests that the summertime high-latitude H2O
above the PMCs is depleted by the formation of PMCs, while the H2O below the PMC
altitudes is enhanced by the sublimation of PMCs when they release H2O back into the
surrounding environment. This is consistent with the WACCM model simulations, which
indicates that PMC formation is expected to decrease the distribution of atomic hydrogen
and H2O around PMCs [83].
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Figure 3. MLS zonal daily mean H2O VMR climatology (ppmv) in the mesosphere at 0.02, 0.01, 0.005,

0.002, and 0.001 hPa for the NH (left column) and SH (right column) (2005–2021). Black lines indicate

local summer solstices. Above 0.01 hPa, white dotted contour lines represent T at 150 K, and solid

lines represent T at 140 K (lower latitudes) and 130 K (higher latitudes), respectively.

In the lower mesosphere at 0.01 hPa and 0.02 hPa, Figure 3 (lower panels) shows the
composites of the H2O maximum at 30–40 days after solstice, not near the solstice. The
wave-driven ascent is known to be responsible for the cold summer polar temperature and
high H2O in the mesosphere. However, delayed H2O maxima (i.e., delayed 30–40 days
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from solstice) at these altitudes indicate that the wave-driven ascent in the summer pole
may not occur simultaneously with the temperature minimum at the summer solstice, but
is a delayed response due to additional subsequent dynamic processes.

The MLS H2O measurement is based on its 183 GHz emission feature from the limb
atmosphere. There is a two-order magnitude of sensitivity difference between emissions
from gas and the condensed phase of water. MLS is very sensitive to water vapor depletion
as it freezes into a condensed phase because it is insensitive to cloud ice. Similar studies with
these MLS data were carried out for the dehydration process near the tropical tropopause
layer (TTL) where water vapor is frozen to cirrus [84], and for the denitrification in the
polar stratosphere where nitric acid gas (HNO3) is taken up onto ice surfaces [85].

The spatial patterns of the H2O hole, a region of exceptionally depleted H2O in the
upper mesosphere at 0.002 hPa over the Arctic and Antarctic regions, are shown in Figure 4
for NH (Figure 4a,c) and SH (Figure 4b,d) for the 2007 (NH) and 2007/2008 (SH) summers.
The H2O VMRs are averaged for 0 to 30 days from the summer solstice. The depleted
H2O region appears at the upper mesosphere above 0.002 hPa from the beginning of the
summer solstice and lasts more than 30 days. We infer that the H2O holes in these regions
are probably caused by the formation of PMCs, not by atmospheric dynamics, since this
kind of perturbation is not found in the MLS CO distribution. The H2O bound in ice
particles is coupled with the background environment by freeze drying and sublimation.
The formation of clouds can dehydrate the surrounding atmosphere, and they release the
H2O back to the surrounding atmosphere within ~60 days from the solstice. The presence
of PMCs presumably causes an obstruction to the upwelling of H2O and may have caused
the H2O holes above the PMCs.

Figure 4. The H2O dehydration (in ppmv) at 0.002 hPa due to PMC formation in 2007 NH and

2007/2008 SH summer seasons. H2O VMRs are averaged for 0 to 30 days from summer solstice

(a) for the NH and (b) for the SH, respectively. Similarly, the H2O (in ppmv) at 0.01 hPa is shown

(c) for the NH and (d) for the SH. Overlaid blue lines represent a temperature contour of 140 K for

0.002 hPa and 150 K for 0.01 hPa.

In both hemispheres, these depleted H2O regions are nearly concurrent with low-
temperature regions, as shown by the 140 K temperature blue contour lines in Figure 4. At
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0.002 hPa, regions of H2O holes are evident where the temperature is lower than 140 K. Note
that the 140 K temperature contour lines are almost coincident with the 70◦N/S latitude line.
The ice particles in the upper mesosphere are transported according to background winds,
eddy diffusion, and sedimentation. Ice particle nucleation and growth are well-described
with microphysical processes and saturation [86,87].

3.3. Climatology of PMCs

To show the daily variability in the frequency of PMC occurrence at different latitudes,
the average PMC occurrence rate (OR) from the two instruments, AIM/CIPS and Himawari-
8/AHI, are compared in Figure 5. The upper panel represents AIM/CIPS-measured PMC
ORs for the NH (Figure 5a) and SH (Figure 5b) and the lower panel represents those
from Himawari-8/AHI for the NH (Figure 5c) and SH (Figure 5d). The PMC ORs are
calculated from the daily occurrence rates during 2007–2021 in the NH and 2007/2008–
2021/2022 in the SH from AIM/CIPS and 2016–2021 in the NH and 2016/2017–2021/2022
from the Himawari-8/AHI measurements. The AIM/CIPS PMC measurements cover
15+ years from 2007, while Himawari-8/AHI only covers 7 years since 2016. Therefore, the
climatologies from the two instruments represent the temporal and spatial distribution of
an average PMC OR from two different periods. A comparison of the two data sets also
shows different latitudinal coverages, with AHI observations limited to below 81◦N/S.

Despite differences in the sampling and algorithms of the measurements, the daily
variations in the PMC ORs from two independent measurements show remarkable sim-
ilarities in their overall spatial extent, timing, and the duration of the cloud occurrence.
The latitudinal extent of the PMC occurrence starts increasing from ~30 days before the
summer solstice to ~30 days after the solstice, until they reach the peak of occurrence. In
both hemispheres, PMCs occur most frequently above 70◦N/S in latitude and for a ~60 to
90 day duration centered around the peak, which occurs about 30 days after the summer
solstice. The OR from AHI reaches its maximum within 80◦N/S latitudes about 20 days
after the solstice, which is ~10 days earlier than that from CIPS.

To examine the impact of atmospheric conditions on PMC formation, mesospheric T
and H2O climatology at 0.02 hPa during the same periods of each PMC observation are
also overlaid with PMC climatology. Solid and dotted contour lines in magenta represent
high-latitude (60◦N/S–82◦N/S) H2O VMRs. Similarly, the white contour line represents
the high-latitude mean T at the same level. During the summer solstice, the average
temperature is ~5 K higher in the SH compared to the NH within the high-latitude region.
Hence, the different threshold values of T are shown in Figure 5 for the two hemispheres.
The T threshold values for the SH and NH are 178 K and 173 K, respectively.

In both hemispheres, the maximum PMC OR is not coincident with the date of the
minimum temperature, but lags up to 30 days after the summer solstice. The mesospheric
temperature at 0.02 hPa and the near-mesopause temperature reaches its local minimum
in the PMC region around the summer solstice, but the PMC occurrence peak from CIPS
lags the temperature minimum, reaching its maximum ~30 days after the solstice in both
hemispheres. The date of the seasonal high-latitude mesospheric H2O maxima seen from
MLS is up to 30 days later than the date of the corresponding local T minima. The lagged
days between the PMC OR and T are reduced in AHI-measured PMC ORs. In both cases,
however, the PMC OR peak occurs between the T minima and H2O maxima.

The two magenta contour lines in Figure 5 represent the daily zonal mean H2O VMR
over 60◦N/S–82◦N/S. On average, the CIPS NH PMC fields greater than 20% of the OR
are mostly confined to humid regions where the H2O VMR is higher than 7.1 ppmv (solid
magenta lines). The PMC ORs greater than 80% are mostly coincident with the region of
a high H2O VMR greater than 7.5 ppmv (dotted magenta lines). On average, high H2O
VMRs of >7.1 ppmv and H2O VMRs of >7.5 ppmv last ~60 days and ~30 days, respectively.
In the case of AHI, regions of the same high H2O VMR are broader and days of the same
high H2O VMR extend as long as ~70 days. The extended days of the high H2O VMR in
Figure 5c,d reflect the increase in mesospheric H2O during recent years.
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Figure 5. Climatology of the daily PMC occurrence rate (OR) in % as observed from AIM/CIPS

(upper panel: 2007–2021) and Himawari-8/AHI (lower panel: 2016–2021) in the NH and SH at each

latitude bin. Black lines indicate the day of local summer solstice. Solid and dotted contour lines in

magenta represent high latitude (60◦N/S–82◦N/S) H2O VMR of 7.1 ppmv and 7.5 ppmv, respectively,

at 0.02 hPa (near PMC altitude). White lines represent high latitude mean T = 173 K (NH) and

T = 178 K (SH) at the same level.

In general, during the MLS observations (2005–2021), the NH high latitude
(70◦N–82◦N) H2O VMR at 0.02 hPa increased by ~0.4 ppmv (~7%). These results are
consistent with the current understanding of the conditions of T and H2O needed for
forming PMCs. A combination of the recent mesospheric cooling and increments in the
mesospheric H2O concentration would provide favorable conditions for the formation of
PMCs in the coming years. Detailed analyses of the year-to-year variability in PMCs, T,
and H2O are discussed in Section 3.4.

The climatology of the PMC OR exhibits a hemispheric asymmetry, as the multiyear
averaged PMC occurrence is more frequent in the NH than in the SH in both the AHI and
CIPS observations. The multiyear average of the daily PMC OR can reach 100% in NH
high latitudes, but it is rarely higher than 80% in the SH. Several studies have noted the
hemispheric asymmetry in PMC occurrence, with PMCs more frequently observed with a
greater extent in the NH relative to the SH [27,39,54,87]. The smaller extent of PMCs in the
SH compared to the NH is also obvious in recent years (2015–2021), as clearly seen from
the Himawari-8/AHI observations [60].

Besides the frequency of their occurrence, distinct interhemispheric differences in PMC
altitudes and micro-physical properties have also been reported. For example, it was shown
that the mean cloud altitude is higher and they are brighter with a greater mean particle
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size in the SH compared to the NH [49]. Interhemispheric teleconnections between the
two hemispheres via stratospheric wind reversal have been proposed as a dynamic control
mechanism [12,21,88–90]. In addition to the cold temperature, the upward transport of
H2O to the summer polar mesopause region is another important factor in PMC formation.
The higher-altitude PMCs in the SH are indicators of the stronger mesospheric upwelling
compared to that in the NH. Different solar forcing in the two hemispheres is suggested
as a main cause of the interhemispheric differences in the altitudes of the supersaturation
region and the upwelling vertical wind, as the solar flux in January is 6% greater than
the solar flux in July due to the Earth’s orbital eccentricity [39]. More precise comparison
of the daily PMC ORs for latitudes between 38◦ and 81◦, obtained from simultaneous
Himawari-8/AHI and AIM/CIPS data, have already been presented in [60].

3.4. Dependence of Year-to-Year Variations of PMC on T and H2O
3.4.1. Onset Time of PMC

To examine the relationship between PMC formation and atmospheric conditions,
the PMC onset dates from CIPs are compared to the timing of the high H2O and cold
temperature at 0.01 hPa (Figure 6). The high H2O onset date is estimated as the first day
of the PMC season, when the MLS high-latitude (60–82◦N/S) zonal mean H2O VMR at
0.01 hPa is greater than 4.2 ppmv and 6.5 ppmv for the NH and SH, respectively. Similarly,
the cold temperature onset date is estimated as the first day of the PMC season when the
MLS high-latitude (60–82◦N/S) zonal mean mesospheric temperature at 0.01 hPa is lower
than 165 K and 185 K for the NH and SH, respectively. Besides the frequency of their
occurrence, distinct interhemispheric differences in the onset time of PMCs are a good
indicator of the wave activity involved in each hemisphere’s PMC season [90].

Figure 6. Interannual variations in the CIPS PMC onset date (in yellow) and onset date of the high

H2O (in blue) VMR and low temperature (in red) with respect to the summer solstice in the (a) NH

and (b) SH. Note the different y axes for each hemisphere’s PMC season.
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The PMC onset date, as seen by CIPS, is estimated from the version 5.20 level 3c data.
The onset date is the first day of the PMC season, when CIPS observed an orbit-average
cloud albedo of at least 5 × 10−6 sr−1 in the latitude range of 70◦–80◦N [91]. A good
consistency in the onset dates between AHI and CIPS are already shown [60], where the
detection threshold for the CIPS albedo is 3 × 10−6 sr−1. Because the estimate of the onset
date is sensitive to the threshold values, the results from AHI may be a bit later if the
threshold is increased to 5 × 10−6 sr−1.

In general, the PMC onset dates occur 20–30 days prior to the summer solstice. During
the 15 years of the CIPS measurements, the earliest onset in the NH was 34 days before
the solstice in 2013 and the latest onset was 20 days before the solstice in 2008. The NH
PMC onset date was from 10 to 20 days earlier than that of the SH. In the NH, the PMC
onset date occurs between 20 and 34 days prior to the summer solstice, while it occurs even
after the summer solstice in the SH. Nevertheless, this shows that the variability in the SH
season onset during CIPS periods is 25 days, significantly greater than that in the NH. The
earliest onset in the SH was 30 days before solstice in 2011 and the latest onset was 5 days
before the solstice in 2022. The PMC onset dates in the NH tend to show an increasing
trend towards an early onset of the season. Interestingly, the onset dates in the SH show
dramatic interannual variability with 4- to 5-year oscillation. Furthermore, they show the
latest onset during the last year of the observation in 2021/2022.

This year-to-year variability in PMC onset time has been reported in earlier observa-
tions. In the SH, solar cycle variation and stratospheric control (inter-hemispheric coupling)
have been suggested as the mechanisms which drive the interannual variation in PMC
onset [21,90,92]. It was proposed that the SH PMC onset is mainly controlled by the timing
of the SH stratospheric polar vortex breaking [93]. An early reversal of winter (eastward) to
summer (westward) stratospheric wind causes the early onset of a net eastward GW drag,
which can lead to an early deceleration of the mesospheric zonal mean flow. Accordingly,
the early onset of an eastward GW drag would accelerate equatorward meridional drift
and mesospheric upwelling. In the NH, inter-hemispheric coupling has been suggested
as one of the drivers of the variation in PMC season onset [22,92]. In this mechanism,
planetary-wave-induced changes in the winter stratosphere modulate the zonal wind,
leading to changes in the GW filtering, the mean meridional circulation, and the summer
mesospheric temperature. The 11-year solar cycle [21], early springtime PW breaking in
the summer stratosphere [43,90], and enhanced quasi 5-day PW activity [91] have also been
suggested as drivers of the interannual variation in PMC onset time in the NH.

Our analysis clearly shows that the summer polar mesospheric cold temperature and
high H2O VMR onsets are correlated with the interannual variability in PMC onset. In
the NH, the mesospheric T and H2O VMR onset time show 2–3-year oscillations and the
PMC onset time tracks these variations well. In the SH, the mesospheric T and H2O VMR
show unique 4–5-year oscillations and the PMC onset time is highly correlated with these
atmospheric oscillations. There are four cases in the SH (2010/2011, 2015/2016, 2020/2021,
and 2021/2022) where the PMC onset times are late. Negative ENSO events associated with
the westerly Quasi Biennial Oscillation (QBO) phase have been suggested as the potential
cause of early SH stratospheric polar vortex breaking around the solstice [92]. Although
early PMC onset has occurred during a strong positive ENSO year, anomalous zonal wind
filtering may induce anomalous eastward GW forcing in the upper mesosphere. We can
infer that the early onset of high mesospheric H2O and cold T at the PMC level, achieved
by the enhanced mesospheric upwelling due to the early onset of a GW drag, would lead
to an early onset time of SH PMC. More on this oscillation is discussed in Section 3.4.3.

3.4.2. Occurrence of PMC

Many studies have discussed the linkages between the increasing trends in the oc-
currence and brightness of PMCs and climate change on different time scales [14,16,17].
Substantial trends in PMC occurrence have been consistently reported since a review paper
by [50]. A more frequent, brighter, and broader extent of PMCs in the NH compared to
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those in the SH has been emphasized [39,54,60,88]. A centennial-scale H2O increase of
about ~1 ppmv due to CH4 oxidation in the mesosphere during the industrialization era
has been proposed as one of the major contributing factors to the increased occurrence of
PMCs [19].

To examine the recent trends and hemispheric asymmetry in the PMC occurrence rate
(OR), we compare the interannual variations in PMC ORs from CIPS and AHI in Figure 7.
To address the atmospheric environment related to these PMC ORs, a comparison of MLS
H2O, RHI, and temperature is also shown for both the NH and SH. For each year, the daily
occurrences of PMCs in each latitude bin from 60◦–85◦N/S are averaged. Similarly, MLS
H2O (ppmv) within the H2O hole beyond 72◦N/S at 0.01 hPa, MLS RHI, and T at near
mesopause (0.001 hPa) beyond 62 N/S are averaged for 0 to 30 days from the summer
solstice for each hemisphere. The error bars indicate the standard deviation of the daily
time series of each variable during 30 days from the summer solstice.

Figure 7. Year-to-year variations in seasonal mean PMC occurrence Rate (%) for NH (a–c) and SH

(d–f) from CIPS (in blue) and AHI (in red). Similarly, year-to-year variations in MLS H2O (ppmv),

RHI (%), and T beyond 62◦N/S at 0.01 hPa are given on the right axis. H2O VMR, RHI, and T are

averaged for 0 to 30 days from summer solstice for each hemisphere. The y-axis for T is reversed for a

better presentation. The vertical bars indicate standard deviations for the MLS variables.

In the NH (Figure 7, upper panel), the PMC ORs as observed by CIPS increased by
0.75%/year during the observation periods (2007–2021). Even though large discrepancies
between CIPS and AHI are shown at the end of the time series in 2021, the ORs, as observed
by AHI, also increased from 2017. The MLS H2O VMR within the H2O hole also generally
increased by ~0.4 ppmv (~7%) during the analysis periods within 2005–2021. An increase
in mesospheric H2O, which is greater in the NH than in the SH, can be the most plausible
candidate for the PMC formation process which leads to a consistent positive PMC trend
in the NH.

Different from the NH, the PMC occurrence rates in the SH are evident during 2016
and 2022 from both observations. While PMC occurrences consistently increase in the NH
(0.75%/year), the SH PMC ORs show a decrease (−0.96%/year). The ORs are relatively low
during recent years, i.e., 2020–2022. In the SH, the MLS H2O VMR within the H2O hole only
increased by ~0.25 ppmv (~4%) and showed similar low local minima in 2016/2017 and
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2021/2022, consistent with the PMC occurrences. PMCs can be indicators of anthropogenic
H2O increases, because increasing H2O significantly enhances the visibility of PMCs.

More interestingly, the PMC occurrence rate variations in the SH are highly correlated
with the mesospheric (0.01 hPa) RHI (γ = 0.93) and T (γ = 0.97) variations. The PMC,
RHI, and T show 4–5 years of mesospheric oscillations. The correlation in the year-to-year
variability between the PMC occurrence and H2O, RHI, and temperature in the PMC region
can be investigated further, as the PMC and middle atmosphere observations continue.
The PMC ORs in the SH show unique features, decoupled from the NH variations. The
perturbations in the NH stratosphere and mesosphere, i.e., stratospheric sudden warming,
do not impact the SH to change the gravity wave forcing, since the midsummer jet in the
SH is strong enough not to be coupled with anomalies in the NH [94].

3.4.3. Quasi Quadrennial Oscillation

In the SH, the PMC and summer mesospheric high-latitude T, H2O, and RHI time
series contains an oscillation over an approximately 4–5-year periods (Figure 7). A peak-
to-peak amplitude of the QQO feature in PMC is 20–25%. The amplitude of mesospheric
T, H2O, and RH oscillation at 0.01 hPa is 4–5 K, 0.3–0.5 ppmv, and 40–50%, respectively.
The distinct features of Quasi Quadrennial Oscillation (QQO) and the unusual periodic
4–5-year oscillation in the high-latitude near-mesopause region T and meridional wind are
reported [95,96] with multiple satellite and ground observations.

Considering the significant negative correlation between the high-latitude T and H2O
at 0.01 hPa, we can infer that the QQO variation in the T and H2O is an adiabatic response.
In the SH summer, the equatorward circulation leads to upwelling and adiabatic cooling,
while poleward circulation leads to downwelling and warming. Similarly, a lower H2O
mixing ratio is expected with the downwelling, and a higher H2O mixing ratio is expected
with the upwelling. In the same way, a higher T and lower H2O mixing ratio are still
expected with descent in the SH winter. A significant anticorrelation between meridional
wind and temperature has been found [96] with wintertime radar measurements at Davis
station, Antarctica. They suggest that the wintertime QQO is linked to adiabatic heating
and cooling driven by the meridional flow. As a mechanism behind the QQO, their analysis
supports tidal and planetary waves, which may filter GWs to drive an adiabatic response in
the mesosphere. However, their explanation is a more plausible explanation for the winter
hemisphere, since GW is relatively weak in the summer hemisphere.

4. Discussion

Quantifying the relationship between PMC, T, and water vapor (H2O) is complicated
due to the interaction of PMC with the surrounding H2O. When the surrounding atmo-
sphere is cold enough to form PMCs, PMCs can dehydrate the surrounding environment.
When the surrounding environment is warmed, the clouds sublimate and release the water
vapor back into the atmosphere. This process is similar in many aspects to that near the
tropical tropopause, where the in situ formed cirrus interacts with local water vapor [84].
In other words, the total water (vapor + ice) is approximately conserved over a short
(months) period of time. Although the degree of saturation (S) is commonly used by the
PMC community [30], RHI (standard product from the MLS retrieval) is an equivalent
variable to S and widely used in Earth and planetary sciences. RHI is simply the ratio of
water vapor pressure over the local atmospheric saturation pressure.

4.1. Relationships between T, H2O, and RHI

The MLS mesospheric temperature (T) data have been validated extensively against
other measurements [71,72,97]. In the polar regions, they generally agree within ~5 K, with
SABER temperature data and improvements have been further made with the version 5
data. As shown in [45], the MLS T is close (within 5 K) to the frost point at the altitude
where PMCs form. As shown in Figure 6, at 0.01 hPa, the MLS T is ~150 K, in line with
the conditions for PMC formation. The 170 K contour used at 0.02 hPa is used to illustrate
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the sharp vertical gradient in the atmosphere where PMCs are likely to form at a higher
altitude. In addition, it is imperative to recognize that PMC formation can be intermittent,
wave-like, or spotty in space and time. The MLS T results shown in this study reflect a
daily or monthly mean condition. Transient wave perturbations can occur and induce a
colder temperature condition for PMCs to form intermittently.

Atmospheric T and H2O are intimately related through the Clausius Clapeyron (CC)
equation. However, the following conditions would be required to determine/validate
one from the other: (1) simultaneous PMC detection at the same location as the T and H2O
measurements; (2) either T or H2O is precisely measured; and (3) the supersaturation ratio
is well known for PMC formation. The MLS RHI uncertainty is typically ~50% [75], which
is largely determined by its T error (1 K ~ 16% in the CC equation). The larger MLS T error
in the mesosphere is likely to increase the RHI uncertainty to 200%, which may help to
constrain PMC supersaturation.

Given the large uncertainties about the range of PMC supersaturation, which is
associated with their formation process and ice and nuclei microphysics, the MLS RHI
data serve as a surrogate for evaluating the validity of the intimate relationship between
T and H2O. Like the situation near the tropopause, the RHI measurement is derived
fundamentally from the CC equation. In this study, we presented a basis of how this
principle is applicable to a wider temperature and pressure range, including very cold
conditions near the mesopause.

4.2. Influence of PMC on H2O and RHI

The impact of the PMC on the atmospheric environment, via the processes of dehy-
dration resulting from ice growth and H2O enhancement resulting from ice sublimation,
is examined with MLS RHI. In Figure 8, a comparison of MLS RHI (%) profiles is shown
for different time periods of the summer solstice. MLS RHIs are averaged for 0 to 30 days
before the solstice, from 0 to 30 days after the solstice, and from 30 to 60 days after the
solstice, respectively, for 60◦N/S–82◦N/S during 2005–2022. The 30 days after the solstice
(in red curves) can be considered as the PMC formation phase and the 30 to 60 days after
the solstice (in yellow curves) can be considered as the sublimation period. The 30 days
before the solstice (in blue curves) can be considered as a background state profile which is
not influenced by the PMC formation.

As seen in Figure 8a,b, the RHI profiles show a rapid increase in RHI with an increasing
altitude from 0.02 hPa. In both hemispheres, enhanced RHI profiles above 0.02 hPa indicate
the increase in RHI from altitudes near the bottom of the PMC layers from 0 to 30 days
after the solstice. After 30 days from the solstice, the RHI profiles tend to go back to the
background states in both hemispheres. In the SH, the RHI from 30 to 60 days after the
solstice is slightly lower than the RHI before the solstice. It is noticeable that the hydration
layers in the SH are elevated to above 0.01 hPa in comparison to those in the NH, and that
this follows from SH PMC being located ∼1 km higher than that in the NH [62].

To show the differences in the RHI distribution among different periods around the
summer solstice, the probability density functions (PDFs) from the same temporal and
spatial conditions of RHI at 0.01 hPa are calculated (Figure 8c,d). The bin size is 5%, and
the total integration of the area under each PDF is normalized to be one. The PDFs of RHI
(%) during different periods indicate that supersaturation (above 100% of RHI) happens
more frequently at 30 days after solstice, when PMCs are forming.
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Figure 8. Comparison of profiles of MLS RHI (%) among different periods around summer solstice in

(a) NH and (b) SH. Comparison of probability density function (PDF) of RHI in (c) NH and (d) SH.

RHI data at 0.01 hPa are averaged for 0 to 30 days before solstice (in blue), 0 to 30 days after solstice

(in red), and 30 to 60 days after solstice (in yellow), respectively, for 60◦–82◦N/S latitude band during

2005–2021.

4.3. Diminishing Solar Cycle Variations in PMC

Discerning the near-term trends in the atmospheric tracers from the influence of the
solar cycle variation is a challenging task. When the variation associated with the solar
cycle is not thoroughly accounted for, there can be biases for any remaining trends. The
variations in the annual mean near-global (82◦S–82◦N) area weighted T and H2O near
the mesopause to the 11-year solar cycle are investigated by analyzing MLS observations
from 2005 to 2021. In this study, the V19 Total Solar Irradiance (TSI) data from the SOlar
Radiation and Climate Experiment (SORCE) Total Irradiance Monitor (TIM) [98] are used
as a solar irradiance index, which can indicate the solar activity level over the solar cycle.
With an absolute accuracy, the TSI can be the preferred reference data, compared to F10.7
flux and Ly-α flux, to determine the amplitude of solar cycle and difference between two
minima. The TIM TSI data have a three times higher accuracy (0.035%) than previous TSI
measurements with a long-term stability of 0.001% per year [99].
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In Figure 9, the annual mean and standard deviations of T and H2O near the mesopause
(0.001 hPa) are shown for the interannual variations related to the solar cycle. At a given
level at 0.001 hPa, the annual mean temperature (Figure 9, left panel) is maximum at
mid-latitudes (30◦N/S–40◦N/S) and minimum at high latitudes above 60◦N/S. The annual
mean temperature clearly shows interannual variations associated with the 11-year solar
cycle (SC). The near-global mean temperature shows an in-phase correlation with the
SORCE-measured TSI without lag (γ = 0.81) with a 95% confidence level [100], as the T is
higher during the solar maximum (2012–2014) and lower during the solar minima (SC 24;
2007–2009 and SC25; 2018–2020). The amplitude of temperature variations associated with
the solar cycle is ~5 K during SC 24–25.

Figure 9. Latitudinal distribution of annual mean temperature (K) and H2O (ppmv) at 0.001 hPa is

shown in the upper panel. The near-global averaged (82◦S–82◦N) annual mean time series and their

standard deviations are shown in the lower panel with SORCE TSI (W/m2) variation. The y-axis for

H2O plot (lower right) is reversed for a better presentation.

The inferred annual mean temperature response to solar forcing from the Hamburg
Model of Neutral and Ionized Components (HAMMONIA) is 0.5–1 K/100 sfu [101]. The
solar cycle variation amplitude of the global mesopause temperature estimated from the
Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) is ~5 K [102]
and 3–5 K [103,104] per 100 solar flux unit (sfu) depending on latitude. Since the F10.7 flux
changes by roughly ~100 sfu over the 11-year solar cycle, our estimate corroborates with
the previous results from the SABER measurements.

The analysis from satellite observations and model simulations suggests a decrease in
mesospheric H2O with solar cycle [14,105] which may be less favorable for PMC forma-
tion. The Ly-α flux plays an important role in the chemical composition of H2O and the
mesosphere [106], by the two major photolysis of H2O at the Ly-α line, i.e.,

H2O + hν → H + OH (3)

H2O + hν → H2 + O(1) (4)

For a given altitude at 0.001 hPa, the annual mean H2O VMR (Figure 9, right panel)
generally increases with an increasing latitude in both hemispheres, reflecting the summer-
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time upwelling of H2O following the mean meridional circulation, which maximizes at
high latitudes. It shows a maximum amount over the SH high latitudes, 60 S–80 S. Similar
to temperature, the near-global mean H2O VMR time series also clearly shows an 11-year
solar cycle signal without lag (γ = −0.85 with 95% confidence level) with TSI. The response
process of water vapor to solar forcing and the pathways of solar signals are complex, be-
cause the H2O VMR in the mesosphere is driven by two processes: transport and chemistry.
The “top–down” pathway considers solar variations in the Lyman-α (121.6 nm) decreasing
the mesospheric H2O, which then couples down to the stratosphere via a wintertime polar
vortex [69]. In “bottom-up” pathway, the tropospheric H2O response may play a role
because both H2O and CH4 in the stratosphere originate from here. With an increased
solar flux during the solar maximum condition, a lower H2O in the upper mesosphere is
expected due to the enhanced H2O photolysis process.

The amplitude of the solar-cycle-driven near-global annual mean H2O VMR is about
0.1 ppmv at near mesopause (0.001 hPa). This 0.1 ppmv solar variation in H2O is consistent
with [106], shown with the composite data at 68◦S and 68◦N. The solar cycle signal is
significant above 0.005 hPa. But below that level, H2O is insensitive to solar irradiance
variation. While the solar maximum is generally expected to induce lower water vapor in
the upper mesosphere, estimates of the solar cycle variation from H2O measurements often
depend on the analysis period. For example, the relatively large amplitude of the H2O solar
cycle variations over 1 ppmv obtained from the Halogen Occultation Experiment (HALOE)
(1993–2005) is diminished after 2004. It was suggested that HALOE H2O measurements
near the summer mesopause can be contaminated by PMCs [106]. Enhanced PMC extinc-
tion during the solar minimum can falsely increase H2O, and a higher H2O concentration
during the solar minimum could have included this artifact.

Solar cycle variations are expected to disturb PMC formation by modulating the
temperature and humidity in the middle atmosphere. A higher temperature [107] and
H2O reduction by Ly-α flux-driven photolysis during the solar maximum period should
provide less favorable conditions for PMC formation. However, quantifying solar cy-
cle signals from PMCs from the data record covering less than a few solar cycles is a
complicated exercise. Despite an expectation of the high sensitivity of PMCs to solar irradi-
ance, little solar cycle signatures are found in the PMC occurrence during 2007–2021. The
linear correlation between yearly PMC ORs and TSI from 2007 to 2021 is not significant
(γ < 0.1) for both hemispheres, as can be seen from Figures 6 and 7 in Section 3.4. The steady
global increase in the mesospheric H2O during the last decade may have overwhelmed the
H2O decrease driven by solar activity. Mesospheric H2O increases due to anthropogenic
methane increases probably play a dominant role in weakening the solar cycle response in
PMCs.

5. Summary

The sensitivities of PMCs to the MLS-measured T and H2O were analyzed to investi-
gate the characteristics of PMC occurrence in relation to the middle atmosphere conditions.
The AIM/CIPS and Himawari-8/AHI measurements of the PMC cover 16 years from 2007
and 6 years from 2016, respectively. The measurements of the middle atmosphere from
MLS fully cover more than 18 years from August 2004.

1. We compared the climatology and year-to-year variability in the daily PMC ORs from
AIM/CIPS and Himawari-8/AHI. Despite differences in the sampling and algorithms
of the measurements, daily variations in the PMC occurrence rate in two independent
measurements showed a remarkable similarity in their overall spatial extent, timing,
and the duration of the cloud occurrence. The OR from AHI reached its maximum,
within 80 N/S latitudes, about 20 days after the solstice, which was ~10 days earlier
than that from CIPS. The climatologies of the two PMC ORs exhibited a hemispheric
asymmetry between the two hemispheres, as the multiyear averaged PMC occurrence
was more frequent in the NH than the SH in both observations.

166



Remote Sens. 2024, 16, 1563

2. The climatologies of the two PMC ORs were compared with the climatology of the
summer solstice H2O VMR and T at the near-PMC level (0.02 hPa) at a high latitude
(60◦N/S–82◦N/S). The PMC occurrence above 60◦N/S was directly related to T and
H2O variations, and the combination of these two determined the PMC’s seasonal
development. In the CIPS case, the high frequency of the occurrence nearly co-
occurred with a high H2O, but it lagged up to 30 days from the temperature drop.
The date of the seasonal high latitude mesospheric H2O maxima seen from the MLS
was up to 30 days later than the date of the corresponding local T minima. The lagged
days between the PMC and T were reduced in the AHI-measured PMC ORs. In both
cases, the PMC OR peak occurred between the T minima and H2O maxima.

3. We showed the spatial patterns of the H2O hole, a region of exceptionally depleted
H2O in the upper mesosphere at 0.002 hPa during the PMC season over the Arctic and
Antarctic beyond 70◦N/S centered at the poles. We inferred that the H2O depletion in
this region was probably caused by the formation of PMCs. These clouds dehydrate
the surrounding atmosphere when they are formed. The H2O amount integrated
below these PMC regions generally increased during the last 17 years in the NH. It
showed consistent interannual variations similar to the CIPS- and AHI-measured
PMC occurrence variations in the NH.

4. Our analysis estimated that the 11-year solar cycle signals in the near-global annual
mean T and H2O were ~1 K and ~0.1 ppmv at mthe esopause level (0.001 hPa) with
TSI variations without a lag (γ = 0.81 for T and γ = 0.85 for H2O with 95% confidence
level), respectively. However, there was no significant anti-correlation between the
PMC occurrence and solar cycle.

5. In the NH, the increases in PMC during recent years were correlated with the positive
trend of the mesospheric H2O, as observed from MLS. Abundant H2O can signifi-
cantly enhance the PMC formation. In the NH, the PMC onset dates also became
5–10 days earlier during the last decade. The NH PMC OR increased ~0.75%/year
during 2007–2021. The significant increase in mesospheric H2O in the NH due to
anthropogenic forcing during the last decade may explain the diminished solar cycle
signals in PMC occurrences during recent years.

6. While PMC occurrences consistently increased in the NH, the SH PMC ORs showed
a decrease (0.96%/year) during 2008–2022 with relatively low rates during recent
years i.e., 2020–2022. In the SH, the summer mesospheric high-latitude T and H2O
VMR time series showed a unique 4–5 years of quasi-quadrennial oscillations (QQOs).
Similarly, the PMC OR and onset time also showed these distinct oscillations. The
peak-to-peak amplitude of the QQO feature in PMC was 20–25%. The amplitude of
mesospheric T and H2O at 0.01 hPa were 4–5 K and 0.3–0.5 ppmv, respectively. The
cold years in the mesosphere coincided with the humid years with abundant H2O.

7. Solar cycle variations are expected to disturb PMC formation by modulating the
temperature and humidity in the middle atmosphere. Higher temperature and H2O
reduction by Ly-α flux-driven photolysis during solar maximum period should pro-
vide less favorable conditions for PMC formation. Despite an expectation of the high
sensitivity of the PMC to the solar irradiance, little solar cycle signatures were found
in the PMC occurrence during the analysis period of 2007–2021. The steady global
increase in the mesospheric H2O due to anthropogenic methane increase during the
last decade may have overwhelmed the H2O decrease driven by solar activity.
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Abstract: Currently, it remains a challenge to effectively monitor areas experiencing intense precipita-

tion and the associated atmospheric conditions on a global scale. This challenge arises due to the

limitations on both active and passive remote sensing methods. Apart from the lack of observations

in remote areas, the quality of some observations deteriorates when heavy precipitation is present,

making it difficult to obtain highly accurate measurements of the thermodynamic parameters driving

these weather events. However, there is a promising solution in the form of the Global Navigation

Satellite System (GNSS) Polarimetric Radio Occultation (PRO) technique. This approach provides a

way to assess the large-scale bulk-hydrometeor characteristics of regions with heavy precipitation

and the meteorological conditions associated with them. PRO offers vertical profiles of atmospheric

variables, including temperature, pressure, water vapor pressure, and information about hydromete-

ors, all in a single fine-vertical resolution observation. To continue validating the PRO technique, we

make use of polarimetric weather data from Next Generation Weather Radars (NEXRAD), focusing

on comparing specific differential phase shift (Kdp) structures to PRO observable differential phase

shift (∆Φ). We have seen that PAZ and NEXRAD exhibit a good agreement on the vertical structure

of the observable ∆Φ and that their combination could be useful for enhancing our understanding of

the microphysics underlying heavy precipitation events.

Keywords: Global Navigation Satellite Systems (GNSS); Polarimetric Radio Occultations (PRO); Next

Generation Weather Radars (NEXRAD)

1. Introduction

The Radio Occultacion (RO) technique, originally developed for planetary sciences
to study other planets’ atmospheres (e.g., [1]), consists on tracking the signals emitted
by a Global Positioning System (GPS) satellite from a Low Earth Orbit (LEO) satellite as
it rises or sets behind the Earth’s limb. The technique measures the delay and bending
caused by the refractivity of radio signals during propagation through the atmosphere.
This delay can be utilized to derive radio refractivity profiles and ionospheric total elec-
tron content. From these radio refractivities, valuable vertical profiles of thermodynamic
variables, including atmospheric pressure, temperature, and water vapor pressure, can
be extracted from the stratosphere down to the surface with a vertical resolution ranging
from 100 to 300 m (e.g., [2]). These products, derived from the standard RO technique,
are currently assimilated operationally into various global Numerical Weather Prediction
(NWP) models (e.g., [3]).

On 22 February 2018, the Spanish Earth Observation satellite PAZ was successfully
launched, carrying a Global Navigation Satellite System (GNSS) Polarimetric Radio Occulta-
tion (PRO) payload. This mission, known as the Radio Occultation and Heavy Precipitation
(ROHP) experiment, is led by the Institut de Ciéncies de l’Espai-Consejo Superior de In-
vestigaciones Científicas/Institut de Estudis Espacials de Catalunya (ICE-CSIC/IEEC) in
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collaboration with NOAA, UCAR, and the NASA/Jet Propulsion Laboratory. The novelty
of the PAZ mission lies in the acquisition of RO measurements at two linear polarizations
for the first time [4].

The primary objective of the PRO technique is to detect heavy precipitation by mea-
suring the difference in the phase delay between the two polarizations, horizontal (H)
and vertical (V), of the GPS signals. Operating at L-band frequencies (L1 at 1.57542 GHz;
L2 at 1.22760 GHz), these signals propagate through the atmosphere and reach the LEO
satellite, which in the case of PAZ is equipped with a modified Integrated GPS Occultation
Receiver (IGOR+) advanced GPS receiver [4]. The measurements of H and V polarizations
are conducted independently, yet synchronously, employing a dual linearly polarized
antenna directed towards the Earth’s limb in the anti-velocity direction of the LEO satellite.
As the signals traverse deeper into denser atmospheric layers, they experience bending
curvature induced by the refractive index vertical gradients. By acquiring the incoming
electromagnetic field at the two linear and orthogonal polarizations, valuable information
can be extracted concerning targets that introduce a differential phase shift (∆Φ) between
the H and V components of the propagating signals. These targets are primarily hydrom-
eteors that undergo flattening due to air drag during their descent or that are naturally
asymmetric (e.g., snowflakes, graupel, etc.). In the presence of heavy precipitation events,
the large droplets stand out for being oblate–spheroid-like. Therefore, the PRO technique
offers the additional benefit of inferring vertical information about precipitation, enabling
the retrieval of both the standard thermodynamic state of the surrounding area and vertical
precipitation information within the same measurement.

The validation of the ∆Φ observable with two-dimensional data has been assessed in
a statistical way using merged precipitation products like the Integrated Multi-satellitE
Retrievals for GPM (IMERG) (e.g., [5,6]). Additionally, passive microwave radiometers
have been used to help with the interpretation of the vertical structure [7], but these also
provide limited vertical resolution retrievals. Furthermore, coincidences with the GPM
Dual frequency Precipitation Radar (DPR) are sparse due to the limited swath of the
space-based radar.

The initial hypothesis of the ROHP experiment, namely, that PRO observations are
sensitive to heavy precipitation, was already demonstrated [5]. Furthermore, it has also
been shown that the PRO observable ∆Φ increases with higher precipitation rain rates,
indicating also sensitivity to precipitation intensity. Moreover, subsequent studies have
shown that PRO is not only sensitive to precipitation, but also to horizontally oriented
frozen hydrometeors found in various vertical layers of convective clouds [8,9]. This
sensitivity is particularly pronounced for snow, where aggregated ice crystals produce
relatively large hydrometeor particles. The combined sensitivity of PRO to both heavy
precipitation and the associated cloud structures, along with its inherent capacity to provide
colocated thermodynamic profiles, makes the PRO technique highly advantageous for
studying heavy precipitation events. Other space-based observing systems focused on ob-
taining vertical thermodynamic profiles often have lower vertical resolution and encounter
challenges when attempting measurements within deep clouds (e.g., [10]). On the other
hand, space-based precipitation radars lack the capability to provide information about the
thermodynamics. Overall, the demonstrated capabilities of PRO render it an interesting
choice for investigating heavy precipitation phenomena, and the microphysics underlying
these events.

Given that prior validations relied on two-dimensional data, this study seeks to
enhance validation by employing three-dimensional data. The specific focus is on validating
the vertical structure, and this can be achieved with the Next Generation Weather Radars
(NEXRAD) dataset. This entails comparing the observable ∆Φ retrieved from PAZ with
the vertical structures of Kdp derived from NEXRAD, which will permit us to calculate the
equivalent differential phase shift observable from these radars.

This article is distributed as follows: Section 2 describes the data used in the analysis
in order to make the comparison between NEXRAD and PAZ, and it also explains the
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methodology that has been followed; Section 3 shows the results of such comparison and
the corresponding statistical analysis; finally, Section 4 accounts for the conclusions.

2. Materials and Methods

2.1. Polarimetric Radio Occultation Data

As it was already mentioned, the PRO technique allows us to compare the phase delay
(Φ) associated with the two measured polarizations. Since situations of heavy precipitation
are characterized by large horizontally oriented raindrops, the accumulated differential
phase shift in these regions, ∆Φ = ΦH − ΦV , will be positive due to the depolarization
effect [8]. ∆Φ takes a value of ±π/2 when the polarization is purely circular, and therefore,
we will analyze ∆Φ with respect to the value it would have if the received field was purely
circular: ∆Φ = ∆Φ − π/2. More specifically, the Φ registered in both ports of PAZ’s
antenna contains the following terms:

Φp = ωt + φrange + φatm
p + φins

p (1)

where ω represents the carrier frequency, φrange is the signature of the phase related to
changes in the range between the transmitter and receiver, φatm

p denotes the signatures of

the phase due to atmospheric effects in the p-polarization (where p can be H or V), and φins
p

indicates the signatures in the p-polarization phase induced by instrumental and platform
environment effects [4].

As the first two terms in Equation (1) are independent of polarization, they cancel out
when obtaining ∆Φ(t):

∆Φ(t) = ΦH(t)− ΦV(t) = ∆Φatm(t) + ∆Φins(t) (2)

where ∆Φ(t) should remain constant with time if no differential shift is introduced across
the ray path. The instrumental term, ∆Φins, can be corrected with calibration [6]. Detailed
theoretical analysis of other systematic effects can be found in [11].

The specific contribution to ∆Φ at each point of the propagation path is defined as
the specific differential phase, Kdp. The values of Kdp are expressed in units of length
(mm-shift/km-rain) instead of radians because these are the general units used in the GNSS
community [4], and that is why it is multiplied by λ/2π. The expression is the following:

Kdp =
λ2

2π

∫

R{ fH(D)− fV(D)}N(D)dD (3)

where the wavelength, λ, corresponds to the GNSS; R represents the real part; fH(D)
and fV(D) are the forward scattering amplitudes describing the effect of scattering of the
GNSS propagating waves by hydrometeors for the horizontal and vertical components,
respectively; the variable D refers to the equivalent diameter of the drops; and N(D) is
the particle size distribution (PSD). The terms accounting for the type of particle (liquid or
solid) and its shape are the scattering amplitudes.

The total hydrometeors’ contribution along the ray path is therefore described by the
following expression:

∆Φ =
∫

L
Kdp(l)dl (4)

where the units of ∆Φ are in mm, Kdp is formulated in Equation (3), and L is the ray path
length. As we deduce from Equation (4), there is an intrinsic ambiguity between the
extension, L, and the intensity, Kdp in the final ∆Φ measurement.

The Calibrated PRO profiles from PAZ are available from May 2018 to the present [12].
Each file represents a PAZ observation and contains the vertical profile of the observable
differential phase shift, ∆Φ, expressed in units of length (mm) and in terms of the tangential
height of each PRO ray. As the PRO rays traverse the atmosphere from GPS to LEO, they
bend due to refractivity gradients, eventually becoming tangential to the surface at their
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lowest height point, defined as the tangent point of the ray, ht. The locations (i.e., latitude
and longitude) representative of each PRO observation are defined at the tangent point of
the ray with ht = 4 km. Even though each ray is linked to its tangential height, hydrometeors
that potentially present along the points in that ray are contributing to the value of ∆Φ,
regardless of its height.

The PRO files also contain the locations (latitude, longitude and height) of each ray
trajectory between the GPS and PAZ, obtained through ray-tracing techniques. These
ray-path locations are calculated and re-gridded, so that only rays whose tangent height
coincides with a regular grid between 0 and 20 km with a vertical resolution of 0.1 km are
provided. This ensures a collection of ray trajectories with the same vertical resolution as
∆Φ, and that represent the trajectories that contribute to each ∆Φ measurement. Only the
portion of these trajectories traveling below 20 km from the surface are considered, since it
is assumed that no clouds nor hydrometeors are present above those heights.

2.2. NEXRAD Data

NEXRAD is a 160 network of dual-polarized weather radars distributed across the
United States (US) and its territories, developed and deployed by the National Weather
Service (NWS) of the US. NEXRAD radars operate at S-band (2–4 GHz) and their main
advantage is that they are equipped with polarimetric capabilities, enabling them to pro-
vide valuable data on precipitation characteristics, such as size, shape and type of hy-
drometeor present in the atmosphere. These data are crucial for understanding severe
weather phenomena like thunderstorms, tornadoes and heavy rainfall events. Additionally,
dual-polarization allows for better discrimination between different types of precipitation,
aiding in the identification of potential hazards. With a wide coverage across the US terri-
tory, NEXRAD radars offer real-time, high-resolution imagery of atmospheric conditions.
The radars scan the sky in a 360-degree rotation, providing continuous updates on weather
patterns, storm movements, and the evolution of weather systems. For more information
about NEXRAD, see [13,14].

The NEXRAD data used here are obtained from the NEXRAD Level II dataset [15].
Each NEXRAD file contains fields for various variables, such as reflectivity (Z), differential
reflectivity (Zdr), total differential phase (Ψdp), cross-correlation ratio (ρdp), among others.
These fields are provided as a function of azimuth, range, and elevation angle. For each
radar, a 3D file is generated approximately every 8 minutes.

Typically, the radar scans have a range of elevation angles between 0.5º and 19.5º.
Different variables have a different spatial resolution. For example, Z is provided at 1.0◦

azimuthal resolution and 1 km in range gate resolution, to a range of 460 km. Doppler
velocity and spectrum width are provided at 1.0◦ azimuthal and 0.25 km in range gate
resolution, to a range of 300 km.

2.3. Coincident Observations between PAZ and NEXRAD

The PAZ satellite is providing around 150/200 occultations per day, globally dis-
tributed, that pass quality control (QC). In the process of selecting the coincident obser-
vations, we have implemented a filtering criterion that includes all observations within a
range of 250 km to a NEXRAD radar. The total number of observations between May 2018
and December 2022 that meet the colocation criteria is 3208.

To achieve the objectives of this study, we have carefully selected coincident obser-
vations from PAZ satellite and NEXRAD weather radars, ensuring they are colocated in
both space and time. The time difference between the occultation and the NEXRAD data
does not exceed 8 min, as we select the closest radar file to each observation. Typically,
an occultation lasts for about 2 min. In terms of spatial alignment, we have chosen multiple
radars for each PAZ observation to ensure a good coverage of the area sensed by the PRO
rays below 20 km. To select the appropriate radars for each observation, we calculate the
distances between all points along the PRO ray trajectories and the radar locations. Radars
that do not reach any ray point within 250 km are discarded. Furthermore, the percentage
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of ray points that have at least one radar within a distance of 250 km is computed and stored
as the covered area of each PRO.

Figure 1 shows the coverage of the NEXRAD radars over the continental U.S., panel (a),
and an example of one coincident PRO observation, panels (b) and (c). Specifically,
Figure 1b,c represents the observation in 3D and 2D, respectively. In Figure 1c we see,
in grey, the projection on the surface of the portion of PRO rays below 20 km. This area
is not the same for all observations since the geometry of the rays when they propagate
through the atmosphere from the GPS to the LEO satellite will depend on the relative
movement of both satellites. Depending on this movement, the rays originating at different
altitudes will present a different degree of vertical alignment [6]. As shown in the figure,
it is discernible that the extensive spatial coverage results in a limited vertical alignment
among these rays, which can also be appreciated in Figure 1b.

Figure 1. In panel (a), the distribution of NEXRAD radar across the continental United States is

shown. Black points indicate radar locations, with the blue areas illustrating the approximate range

of the radars. The panel (b) showcases a particular colocated observation of PAZ and NEXRAD in

3D, while panel (c) shows the same observation in a 2D image. Only the portion of the rays below

20 km is shown. The gray region in panel (c) represents the 2D projection of the PRO rays, and the

coloured map is a Plan Position Indicator (PPI) of the reflectivity measured by the selected radars for

that observation.

2.4. Calculation of Kdp and ∆Φ from NEXRAD

To obtain vertical profiles of the observable ∆Φ using NEXRAD data, it is essential
to calculate the variable Kdp since it is not directly provided in the NEXRAD Level II files.
To accomplish this task and process the radar files, we use the Py-Art python module [16].
Once the radars for each observation are selected, the variable Kdp is calculated for each one
of them. After evaluating various algorithms, we have found that the method described
in [17,18] suits our purposes best, providing appropriate values of Kdp.
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The algorithm in question, as well as the majority of algorithms subjected to testing,
have been explained and compared in a prior publication, as documented in [19]. This
specific algorithm that we use consists on a four-step process for retrieving the Kdp, and also
allows us to adjust certain input parameters. These parameters are the number of iterations
of the four step process, the dimensions of the sliding window employed in the smoothing,
and a pre-filter procedure applied to the variable representing the total differential phase
shift (Ψdp), defined as:

Ψdp = Φdp + δhv, (5)

being Φdp the differential phase shift measured by the radar and δhv the differential backscat-
ter phase shift.

Regarding the number of iterations, it has been empirically ascertained that variations
therein do not yield a discernible impact on the final value of Kdp; consequently, the default
value of 10 iterations has been retained. The window size is defined as the extent of the
sliding window employed for smoothing the Ψdp before the Kdp calculation. As outlined
in [19], smaller window sizes are better suited for scenarios featuring substantial values
and steep gradients in Kdp, whereas larger window sizes are more appropriate for those
characterized by gradual gradients in such variables. In the present study, it has been
observed that the final ∆Φ profile undergoes significant variations in response to alter-
ations in this parameter. To establish an optimal fit for the outcomes, a comprehensive
analysis of the window size has been undertaken, with detailed findings presented in the
subsequent section.

The pre-filter process applied to the raw Ψdp values encompasses several steps, namely:
the exclusion of values characterized by a correlation coefficient (ρhv) below a specified
threshold, herein set at 0.65; the identification and removal of portions marked by pro-
nounced discontinuities; the elimination of exceedingly brief sequences of valid data; and
the application of a median filter to each profile, as documented in [16]. The Kdp obtained
from this algorithm is also corrected in terms of the elevation angle. This correction is
essentially carried out due to the differences in the geometry of both techniques that we
aim to compare. While in NEXRAD the signals exhibit a difference in the angle of incidence
as the elevation emission angle from the radar changes, in PRO, the signals are practically
tangential to the surface, meaning that the corresponding elevation angle is very close to 0
degrees. The correction is expressed by the following expression [20]:

Kdp(0) ≈
Kdp(θ)

cos2(θ)
, (6)

where θ is the elevation angle, Kdp(0) is the specific differential phase shift at an elevation
angle of θ = 0º, and Kdp(θ) is the specific differential phase shift at an elevation angle θ.

The next step is to map the Kdp values obtained from NEXRAD to the PRO rays. To do
so, we perform the interpolation with each of the selected radars for each PRO event,
and calculate the mean of total overlapping interpolations. Through this process, we obtain
the Kdp values corresponding to the radars for each PRO ray, measured in units of degrees
per kilometer. Integrating the Kdp from NEXRAD along each PRO ray directly yields
the ∆Φ at the S-band for each of the rays, which are associated with a specific tangential
height ht. Finally, two conversions are performed to obtain the final profile: one to convert
the units from degrees to millimeters and the other to transition from S-band to L-band.
Considering that both bands are within the Rayleigh regime, the approximation made is a
conversion factor [21]:

∆ΦL(mm) = ∆ΦS(degrees) ·
λS

λL
·

λL

360
, (7)

where λ represents the wavelength, and the subscripts S and L refer to the frequency bands.
The first conversion term accounts for the conversion from S to L band, while the second
term refers to the conversion from degrees to millimeters.
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A smoothing process is also applied to the resulting vertical profile of ∆Φ, which
uses a sliding window of five adjacent elements, with the aim of mitigating noise and
accentuating the general trends within the profiles. Figure 2 shows an scheme of the steps
followed in order to obtain the ∆ΦNEX .

Figure 2. Diagram showing the steps followed to obtain the vertical profiles of ∆Φ from NEXRAD.

3. Results and Discussions

3.1. Sensitivity of ∆ΦNEX to Window Size

To ascertain the optimal window size that suited our specific cases, we systematically
assessed three distinct window dimensions, specifically, 4, 6, and 8. This parameter is
expressed in units of number of gates, thus meaning that 4, 6, and 8 represent the number of
gates we are considering for a specific window. Here, gate refers to a longitudinal element
within the radar beam, representing a discrete volume of space. The length of one gate
depends on the configuration at which the radar is operating. However, typically, the value
of one gate is around 0.25 km. The window size has to be an even number according to the
algorithm specifications that we are using for retrieving Kdp. The three different window
sizes were employed to perform the analysis in which we compute the vertical profiles
of ∆ΦNEX for each PAZ observation within our subset of coincidences. We have started
by evaluating the correlation coefficient between the PAZ observations and the profiles
derived from NEXRAD for these three window sizes, thereby facilitating the identification
of the most appropriate window size for a particular observation.

The computation of the correlation coefficient was restricted to the altitude range
spanning from 3.5 km to 12 km to avoid low-altitude ambiguities in the PAZ retrievals [6].
On the other hand, an upper boundary was established as a safeguard measurement,
prompted by the fact that when we reach the altitude at which no targets are detected
the values of the NEXRAD profiles asymptotically approach zero, whereas the PAZ data
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continues to exhibit small fluctuations due to noise. This upper threshold was imposed to
ensure that this disparity does not influence the correlation coefficient.

In an analogue way, observations where we do not have precipitation are characterized
by a vertical profile of ∆ΦNEX that is completely or almost completely zero, and a vertical
profile of ∆ΦPAZ that contains some noise. For this reason, the correlation coefficient that
we will have associated with non-rain events will be practically zero. Therefore, in Figure 3,
we present the correlation coefficient values computed exclusively for cases that involve
rain events. This selection process encompasses isolating cases from the dataset of PAZ-
NEXRAD coincidences based on specific criteria: we considered cases where the mean
∆Φ value from PAZ, between 0 and 10km, exceeded 1.5 mm and where radar coverage
of the PRO area exceeded 60%. We have also discarded four cases where the ∆ΦNEX had
unrealistic values.

Figure 3. Histogram showing the correlation coefficient for the cases considered as rainy events (see

text), for the different window sizes represented in different colors (as indicated in the legend).

The analysis reveals that, except for two (three) cases when employing a window
size of 4 (6) gates, most PAZ observations demonstrate a notable concordance with the
corresponding profiles of ∆ΦNEX. These three cases that exhibit a lack of correlation in
the ∆Φ profiles appear to manifest anomalous data retrieval issues within the NEXRAD
radar system. We also have a larger amount of cases that fit the previous restrictions for the
window size of four gates.

While the correlation coefficient provides an indication on the agreement about the
shape of the vertical profiles, computing the mean values of the ∆Φ between two heights
provide further indication on the agreement between the magnitudes. The mean ∆Φ

between 2 km and 8 km for PAZ and NEXRAD has been computed for the profiles obtained
with the three window sizes, and the results of the comparison between the two are shown
in Figure 4. When no or little precipitation is observed (small values of ∆ΦPAZ), it can
be seen how there is larger dispersion in the ∆ΦNEX when the window size is smaller.
This was the same result as obtained in [19], where they have seen that smaller window
sizes performed better for larger values of Kdp, while larger window sizes did for smaller
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values of Kdp. This is mainly because smaller values of Kdp are typically associated to the
presence of small raindrops or drizzle, and therefore, employing a larger window size
could help reduce excessive noise and average the small-scale variations and provide a
smoother representation. Whereas when measuring higher values of Kdp, there may be
more pronounced variations over shorter distances so a smaller window size might be
preferred in order to capture these variations at a finer spatial scale.

Figure 4. Mean ∆Φ (mm) between 2 km and 8 km for both NEXRAD and PAZ and for three window

sizes. The slope and the coefficient of determination are also displayed in the legend. The colocated

observations presented here are the ones where the radar coverage exceeds 60%.

Similarly, it is observed that for larger values of ∆ΦPAZ, there exists an inverse pro-
portionality with respect to the window size on the ∆ΦNEX , where smaller window sizes
are associated with larger values of ∆ΦNEX. This is expected due to the fact that smaller
window sizes in the smoothing of the Ψdp observations allow for rapidly varying regions to
be inverted to Kdp, which could correspond to noisy observations or areas of precipitation.

All in all, the results in Figure 4 indicate that, for the majority of cases, the ∆ΦPAZ
and ∆ΦNEX agree better for small window sizes in large ∆Φ regimes, while the agreement
is better using a larger window size under low ∆Φ conditions. This suggests that an
adaptative window size to specific precipitation regimes would be a good idea, as has
been previously suggested in [22]. This, however, is not implemented in the Py-Art Kdp
retrievals and is out of the scope of this work to perform such modifications.

Continuing with the analysis, we have also examined situations in which there is no
precipitation. Since the correlation coefficient would not be a representative value of the
agreement between both profiles, based on what we have already commented, we show
the histograms present in Figure 5a,b. In Figure 5a, we have selected, for various window
sizes, those cases in which the mean of ∆ΦNEX below 10 km is less than 1 mm. For these
observations, we have plotted the histogram of corresponding values of the mean ∆ΦPAZ
below 10 km and calculated the percentage of these observations with a ∆ΦPAZ ≤ 1 mm.
The analogue has been represented in Figure 5b where the values of the mean ∆ΦNEX are
represented for those observations with a mean ∆ΦPAZ ≤ 1 mm. From the results depicted
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in Figure 5a,b, it is observed that for both figures and various window sizes, over 85% of
the cases exhibit ∆Φ values below 1 mm. This agrees with the fact that the noise values
considered for this observable are less than 1.5 mm as stated in [5,6]. This implies that for
most observations where PAZ does not detect rainfall, the NEXRAD radars do not detect
precipitation either.

(a) (b)

Figure 5. Mean ∆ΦPAZ between 0–10 km (a) for those observations where the mean ∆ΦNEX between

0–10 km is below 1 mm, and ∆ΦNEX between 0–10 km (b) for those observations where the mean

of ∆ΦPAZ between 0–10 km is below 1 mm. For each of the window sizes we have calculated the

percentage of the cases that have the mean ∆ΦPAZ between 0–10 km below 1 mm (a) and ∆ΦNEX

between 0–10 km below 1 mm (b).

Table 1 shows the number of colocated observations that we have depending on the
restrictions that we apply.

Table 1. Number of cases employed in the analysis depending on the restrictions applied. The 〈∆Φ〉

represents the mean ∆Φ between 0–10 km and cc is the correlation coefficient between the profiles.

In some cases the number of observations will depend on the window size, such as 〈∆ΦNEX〉, so for

this tables the number of cases correspond to the window size of four gates.

Number of Cases

Total 3208

≥60% area covered 1076

〈∆ΦPAZ〉 ≥ 1 mm 221

〈∆ΦPAZ〉 ≥ 1.5 mm 117

≥60% area covered and 〈∆ΦPAZ〉 ≥ 1.5 mm 51

cc ≥ 0.6 290

cc ≥ 0.8 127

〈∆ΦPAZ〉 ≤ 1 mm 2987

〈∆ΦNEX〉 ≤ 1 mm 2898

〈∆ΦPAZ〉 ≤ 1 mm and 〈∆ΦNEX〉 ≤ 1 mm 2818
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We should also take into consideration that we are using the radar data that is tem-
porally closest to the observations. Radar data are generated approximately every 8 min,
and the time we consider as the PAZ observation time is the start of the occultation, which
lasts for approximately 2 min. Hence, in situations involving rapidly evolving precipitation
events, there may be an associated error that warrants careful consideration. Furthermore,
it is possible that there are situations in which a significant portion of the precipitation is
not covered by the radar observations. The selection of the 60% area coverage threshold
was made with the aim of ensuring an adequate number of cases for statistical analysis
while also ensuring that a substantial portion of the occultation area is covered.

3.2. Illustrative Examples of Vertical Profiles of ∆Φ

The main aim of this investigation is to assess the agreement between vertical pro-
files of ∆Φ obtained from PAZ and from NEXRAD. As demonstrated in Figures 3 and 4,
the agreement for well-covered, precipitating cases is good. Furthermore, in this section
we scrutinize three specific cases of coincident observations between PAZ and NEXRAD,
where PRO rays intersect precipitation regions (see Figures 6–8). Through a meticulous
side-by-side comparison, our goal is to identify significant similarities or differences in
the ∆Φ measurements obtained by both instruments during precipitation events. In addi-
tion, we present a statistical analysis of the difference between ∆ΦPAZ and ∆ΦNEXRAD to
provide a broader and more comprehensive perspective on the results.

Figure 6. Same as in Figure 7, but corresponding to PAZ profile ID PAZ1.2021.220.13.34.G01.

Upon examination of these profiles, a noteworthy degree of similarity becomes evident.
The absence of values at lower altitudes is intentional to mitigate ambiguities in the PAZ
profiles at those heights. Nevertheless, in all cases, both the shape and magnitude of
the profiles exhibit a high degree of concordance. While most ∆Φ peaks are consistently
represented in both profiles, they may not align precisely in terms of altitude. Discrepancies
in the profiles may be attributed, in part, to factors such as instrumental characteristics,
variations in measurement methodology, time differences in the case of rapidly evolving
precipitation, and retrieval errors.

Moreover, a substantial presence of hydrometeors at lower altitudes (around 2–4 km,
as observed in Figures 7 and 6) corresponds to a higher level of agreement between PAZ
and NEXRAD profiles, in terms of the shape of the profile. Conversely, for peaks situ-
ated at higher altitudes (approximately 5–7 km, as is seen in the case shown in Figure 8),
the agreement diminishes. This reduction may be attributed to the potential influence of
mixed-phase hydrometeors around these altitudes and also to the presence of smaller parti-
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cles that are more difficult to be sensed by PAZ because of the lower frequency employed.
A window size of 4 gates was employed for the three cases presented here. However, while
our analysis indicates that a window size of 4 gates yields a superior correlation coefficient
for the majority of cases, observations exist where an alternative window size demonstrates
a better fit. This variation emphasizes the importance of customizing the analysis to specific
cases in order to ensure the most accurate results when calculating Kdp.

Figure 7. PAZ observation (ID: PAZ1.2020.057.22.53.G09) colocated with NEXRAD radars and the

associated vertical profiles for both instruments. The left panel shows the Kdp composite field

captured by the radars (black points indicate radar locations) with the area of the projection on the

surface of the portion of PRO rays below 20 km, in grey. Right panel shows the corresponding vertical

profiles of ∆Φ as obtained using NEXRAD data (red) and PAZ (black). In the legend we also present

the corresponding values of window size (w), the correlation coefficient (cc) and the percentage of

the area covered by the radars (p).

Figure 8. Same as in Figure 7, but corresponding to PAZ profile ID PAZ1.2018.360.23.55.G11.
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3.3. Statistical Analysis of ∆Φ Differences

From a broader perspective, statistics on the difference between ∆ΦPAZ and ∆ΦNEX
for all cases fulfilling the coverage condition (i.e., coverage > 60%) have been computed.
The outcomes of this analysis are depicted in Figure 9. Each column in the figure corre-
sponds to a different window size, while each row imposes a distinct constraint on the
mean ∆ΦPAZ within the altitude range of 0–10 km. The first row illustrates scenarios where
〈∆ΦPAZ〉 ≥ 4 mm (associated to heavy precipitation regime), the second row comprises
observations with 〈∆ΦPAZ〉 ≤ 4 mm (linked to lower precipitation regimes), and the third
row includes colocated cases in which PAZ has not detected precipitation, denoted by
−0.5 mm ≤ 〈∆ΦPAZ〉 ≤ 0.5 mm.

In Figure 9a–c, corresponding to the heavier precipitation regime, the discernible
trend reveals an increasing positivity in the median difference between ∆Φ from PAZ and
NEXRAD with the increase of the window size. This observation aligns with expectations,
as commented earlier, where the values of ∆ΦNEX exhibit a diminishing trend with an
increasing window size. Notably, the optimal window size appears to be for 6 gates, a choice
supported to some extent by favorable outcomes in Figures 3 and 4 when employing this
size for the moving window. Nevertheless, at altitudes spanning 6–8 km, the window size
of 4 gates seems to be a potentially better choice, again revealing discrepancies in regions
characterized by a higher concentration of mixed-phase hydrometeors and possibly by
smaller hydrometeors.

For Figure 9d–f, corresponding to lighter precipitation than the previous case, a similar
pattern is observed, with the difference between PAZ and NEXRAD exhibiting an increasing
positivity correlated with the window size. However, here the optimal window size is
inferred to be 8 gates, a fact consistent with the previous comments that a larger window
size is preferable for scenarios with lower values of Kdp.

Figure 9g–i depict the statistics for cases with no or very little precipitation, where the
difference remains practically invariant across the different window sizes. For this cases,
where Kdp values from NEXRAD are expected to be near 0, the result of the difference
between ∆ΦPAZ and ∆ΦNEX is expected to yield values consistent with the PAZ ∆Φ noise.
The results presented here resemble those obtained in [6], with small standard deviations
of ∆Φ increasing with decreasing altitude.

In summary, for instances where precipitation has been identified, the importance of
the selected window size becomes relevant in ensuring accurate determinations of Kdp.
Throughout this analysis, the same window size has been applied uniformly across all
radars surrounding an observation. Nevertheless, it warrants consideration to investigate
whether better results could be achieved by adapting the window size based on the specific
precipitation characteristics encountered along each radar ray. Such an approach may offer
valuable insights into optimizing the accuracy and relevance of Kdp estimations.

3.4. Echotop Height Comparison

A final study of the concordance between ∆ΦNEX and ∆ΦPAZ has been performed,
consisting on comparing the echotop height values extracted from both datasets, as depicted
in Figure 10. The determination of NEXRAD’s echotop consists on the interpolation of
reflectivity data from the radars onto the PRO rays, analogous to the approach applied
to Kdp. The following thresholds were applied to the reflectivity values: Z ≥ 20 dBZ and
Z ≥ 10 dBZ. By identifying the maximum height associated with these thresholds, we then
select the associated tangential height of the ray that actually crosses that point, instead
of the actual height. By doing this, we are not obtaining the “real” echotop height but the
“projected” one to the tangent point, and this is done to ensure a fair comparison between
the two observational techniques.
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Figure 9. Difference between ∆ΦPAZ and ∆ΦNEX for those cases that are covered more than 60% by the

radars. Each column represents a different window size ((a,d,g) represent a window size = 4, etc.), while

each row represents a different condition for the mean ∆ΦPAZ between 0–10 km. For the first row, the cases

represented are the ones were PAZ has detected rain and 〈∆ΦPAZ〉 is larger than 4 mm. In second row, we

represent as well cases where PAZ has detected precipitation but 〈∆ΦPAZ〉 is lower than 4mm. The third

row represents those cases where PAZ has not detected precipitation, this means that 〈∆ΦPAZ〉 is between

±0.5mm. For each figure the number of valid points for each altitude is represented by a red line (top

x-axis).

The echotop equivalent for PAZ observations was defined as the highest point where
∆ΦPAZ surpasses a threshold for five consecutive measurements. This threshold was
calculated by taking the mean of ∆ΦPAZ values above 20 km (where neither rain nor clouds
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are anticipated) and adding four times the standard deviation. This rigorous criterion
ensures that if surpassed, the ∆ΦPAZ signature unequivocally originates from precipitation
or cloud-related effects.

Figure 10 shows roughly a linear relationship between the two, with exceptions at-
tributable to cases where precipitation was not detected. This can be appreciated by the
values of the slope for the linear regression, being the one corresponding to Z ≥ 10 dBZ the
closest to one. For the case where Z ≥ 10 dBZ, it is evident that “echotop” heights recorded
by PAZ are lower than those of NEXRAD. This suggests that PAZ underestimates the
echotop height compared to NEXRAD, registering lower upper boundaries of the precipita-
tion layers. These differences could be attributed to factors such as respective frequencies
employed by each instrument for detection, being NEXRAD more sensitive to smaller
particles than PAZ. This may indicate that the specific hydrometeors associated with such
thresholds are smaller than what PAZ can effectively detect. Besides, the instruments could
be more sensitive to different atmospheric layers. NEXRAD is more sensitive to smaller
particles, so they might be detecting features in a higher atmospheric layer than PAZ.

Figure 10. Values of the echotop height obtained from NEXRAD and PAZ datasets for two different

thresholds, Z ≥ 20 dBZ and Z ≥ 10 dBZ.

4. Conclusions

In this study, we have selected colocated observations from the PAZ satellite and
NEXRAD ground-based radars in order to validate the vertical structure of the PRO ∆Φ

observable. Such validation is achieved by using NEXRAD to obtain profiles of differential
phase shift. These profiles were then subjected to a comparative analysis against their
analogues retrieved from PAZ. Furthermore, an investigation focused on optimizing the
smoothing window parameter for calculating the Kdp variable was conducted with the aim
of achieving the best fit between the profiles. Subsequently, both the distinctions and simi-
larities within these profiles were discussed, and some properties were subject to individual
examination. It has been shown that the agreement holds for both the shape and magnitude
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of the observable. Moreover, statistical comparison using selected profiles grouped by
different precipitation regimes exhibit mean differences and dispersion consistent with the
used window size; that is, agreement increases with lower window size when considering
heavier precipitation, whereas the agreement is better using larger window size when
precipitation is lighter. Also, for the non-rainy cases, the are no significant biases, and the
dispersion agrees with that reported in previous studies.

The good agreement observed between the vertical profiles obtained from both plat-
forms show the potential of PAZ PRO observations in characterizing, to some extent,
the vertical structure of heavy precipitation events. This underscores the potential for
multi-platform validation of precipitation measurements, particularly in regions with lim-
ited ground-based radar coverage. Besides, it makes clear the PAZ mission’s capabilities
to contribute to heavy precipitation research, emphasizing the method’s importance as a
powerful tool for further enhancing the understanding and characterization of precipitation
events and their associated thermodynamics.

Notably, we have identified remarkable consistency in the detection altitudes of
hydrometeors between PAZ and NEXRAD, with numerous observations showing that both
instruments identify hydrometeors at similar altitudes. However, some differences were
observed under specific meteorological conditions, particularly around altitudes where
the presence of small frozen particles is more pronounced. Due to the higher frequency
employed by NEXRAD compared to PAZ, the radars are more sensitive to such small
particles. This sensitivity leads to variations in detection altitudes for specific hydrometeor
types. Nevertheless, PAZ observations demonstrate increased sensitivity to particles such
as snow. This is thought to be due to the geometry employed by the technique. Therefore,
the combination of data from PAZ and NEXRAD could enhance our ability to interpret
radar data in regions experiencing mixed-phase precipitation.

It is imperative to acknowledge that certain observed disparities may be attributed to
factors such as instrumental characteristics and variations in measurement methodologies,
as well as retrieval errors. Consequently, a prudent consideration of these limitations
is essential when drawing conclusions from this study. Besides, radar-based data are
subject to some uncertainties such as anomalous propagation, partial beam filling, beam
overshooting and spatio-temporal resolution, among others.

Also, it is worth mentioning that we encountered certain challenges in processing
NEXRAD Level II data. Two of the algorithms mentioned in [19] were impractical to
apply due to their computational cost, and another provided Kdp values lacking physical
significance. Regarding the window size, existing literature on the optimal choices based
on radar-derived variable values was limited, as was the guidance for selecting a specific
window size for a particular case study. Since the Kdp is a polarimetric variable independent
of attenuation and miscalibration, it is a valuable variable for many analyses, so in regard
to the different processes to calculate Kdp, the data obtained from PAZ could prove useful
in refining this procedure.

In summary, this research solidifies the PRO technique as an instrument for quantifying
heavy precipitation events. It emphasizes the role played by satellite-based systems, such
as PAZ, in advancing our comprehension of hydrometeor detection and characterizing
the microphysical properties of the atmosphere, especially in remote regions experiencing
complex weather phenomena.

As for future work, there is potential to adapt the Kdp algorithm to consider variations
in window size based on the polarimetric and non-polarimetric variables measured by
the radar. We have seen in this study that some precipitation characteristics could be
taken into consideration when selecting the proper window size. Additionally, exploring
algorithms that classify hydrometeors could be valuable for a more in-depth study of
areas with mixed-phase hydrometeors, providing insights into the sensitivity of ∆Φ to
these conditions.
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GNSS Global Navigation Satellite Systems

PRO Polarimetric Radio Occultation

NEXRAD Next Generation Weather Radars

ROHP Radio Occultation and Heavy Precipitation

ICE-CSIC Institut de Ciéncies de l’Espai-Consejo Superior de Investigaciones Científicas

IEEC Institut d’Estudis Espacials de Catalunya

NOAA National Oceanic and Atmospheric Administration

UCAR University Corporation for Atmospheric Research

NASA National Aeronautics and Space Administration

GPS Global Positioning System

LEO Low Earth Orbit

IGOR+ Integrated GPS Occultation Receiver

NWP Numerical Weather Prediction

GPM Global Precipitation Mission

GMI GPM Microwave Imager

PPI Plan Position Indicator

PSD Particle Size Distribution

IMERG Integrates Multi-satellitE Retrievals for GPM

DPR Dual frequency Precipitation Radar

NWS National Weather Service

QC Quality Control
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Abstract: Satellite navigation is an essential component of the national infrastructure. Space weather

and ionospheric conditions are the prime sources of GNSS (global navigation satellite system) posi-

tioning, navigation, and timing (PNT) service disruptions and degradations. Protection, toughening,

and augmentation (PTA) of GNSS PNT services require novel approaches in ionospheric effects

mitigation. Standard global ionospheric correction models fail in the mitigation of high-dynamics

and local ionospheric disturbances. Here, we demonstrate that in the case of the short-term fast-

developing geomagnetic storm, a machine learning-based environment-aware GNSS ionospheric

correction model for sub-equatorial regions may provide a substantial improvement over the ex-

isting global Klobuchar model, considered a benchmark. The proposed machine learning-based

model utilises just the geomagnetic field density component observations as a predictor to estimate

TEC/GNSS ionospheric delay as the prediction model target. Further research is needed to refine the

methodology of machine learning model development selection and validation and to establish an

architecture-agnostic framework for GNSS PTA development.

Keywords: satellite navigation; GNSS positioning, navigation and timing; machine learning-based

environments; TEC/GNSS ionospheric delay

1. Introduction

Standard GNSS (global navigation satellite system) ionospheric delay correction mod-
els suffer from shortcomings caused by their global nature and coverage, and constraints
of the broadcast model parameters update on a daily basis. In such a manner, the stan-
dard GNSS ionospheric correction models, such as the Klobuchar model [1], used for GPS
positioning, fail to account for local and sudden ionospheric events. Failure in the character-
isation of the actual TEC propagates into GNSS pseudorange measurement errors, resulting
in increased GNSS position estimation errors, and the delay affects the growing number of
GNSS-based technology and socio-economic applications, as modern civilisation becomes
reliant on GNSS positioning, navigation and timing (PNT) services and their guaranteed
performance levels [2,3].

The ionospheric delay results from the conditions the satellite radio wave encounters
during its propagation through the Earth’s ionosphere [4]. The impact propagation process
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that leads to the formation of the ionospheric delay, and, consequently, the GNSS pseudo-
range measurement errors and GNSS position estimation errors, was described with the
Space weather–GNSS positioning performance coupling model [5].

The analytical expression of the ionospheric delay may be derived from the Appleton–
Hartree equation [4]. Derivation yields the relation between the ionospheric delay ∆tiono [s]
and the vertical ionospheric profile N(h) [electrons/m3], an analytical model of the free-
electron density at a given height h above the Earth’s mean sea level, as given in (1). Physical
constants used in (1) denote, as follows, e, unit electron charge (1.6 × 10−19 C); me, unit
electron mass (9.1 × 10−31 kg); c, velocity of light in vacuum (2.99792458 × 108 m/s); ε0,
permittivity of vacuum (8.854 × 10−12 F/m); and ω, angular wave frequency in [rad/s].
Integration bounds in (1) are determined with the lower hlower and upper hupper boundary
of the ionosphere.

∆tiono =
e2

2ǫ0meω2c

∫ hupper

hlower

N(h)dh (1)

The introduction of numerical values of physical constants yields a relationship be-
tween the ionospheric delay of a radio signal and the vertical ionospheric profile, as ex-
pressed with (2) [4], with ∆tiono [s] denoting the ionospheric time delay, N(h) [electrons/m3]
denoting the vertical ionospheric profile, h [m] denoting height above the mean sea level,
c denoting the velocity of light in vacuum (2.99792458 × 108 m/s) and f denoting radio
carrier frequency.

∆tiono =
40.3

c f 2

∫ hupper

hlower

N(h)dh (2)

Satellite navigation systems operate under the presumption of satellite signal propaga-
tion at the velocity of light in vacuum along its path from a satellite aerial to a receiver aerial,
a condition that is not met during the passage through the ionosphere and troposphere [6].

Multiplication of both sides of (2) with the velocity of light in vacuum c will yield
an equivalent expression, describing the relationship between the error of the measured
distance between a satellite and a receiver aerial ∆ρiono [m], the so-called pseudorange and
the vertical ionospheric profile N(h), as given in (3) [2,7,8].

∆ρiono =
40.3

f 2

∫ hupper

hlower

N(h)dh =
40.3

f 2
TEC (3)

The integral factor in Equations (1) and (3) is known as Total Electron Content (TEC).
TEC, expressed in [electrons/m2], denotes the surface density of free electrons encountered
by a satellite radio signal traveling along its path. TEC takes large values and is commonly
expressed in TECU units (1 TECU = 1 × 1016 electrons/m2). TEC results from the iono-
spheric conditions described with the vertical ionospheric profile N(h), which renders TEC
the outcome of the ionospheric conditions, rather than the ionospheric descriptor.

The unmet presumption of the satellite radio signal propagation at the constant ve-
locity of light in vacuum is the prime single cause of the satellite positioning error [6].
Ionospheric conditions cause a complex behaviour of the GNSS ionospheric delay, de-
scribed with a bias and random error components [5]. Quiet space weather, geomagnetic
and ionospheric conditions render the bias component of the ionospheric delay dominant,
while in disturbed ionospheric conditions, the influence of the random component dom-
inates. Standard ionospheric delay correction models, such as the Klobuchar model for
GPS, Beidou and Glonass (CDMA) systems, address the bias component of the GNSS
ionospheric delay. This causes minor to considerable problems for the GNSS ionospheric
delay prediction, and the resulting GNSS PNT degradation, in times of space weather,
geomagnetic and ionospheric disturbances, as shown in Figure 1.
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Figure 1. Klobuchar model (blue line) failure in prediction of the TEC/GNSS (red line) pseudorange

error (St Patrick’s Day 2015 geomagnetic storm, at Darwin, NT).

Sudden, localised and short-term geomagnetic and ionospheric disturbances are of
particular concern, as such conditions are not described correctly with the standard cor-
rection models, which have a global nature and extent; do not consider local disturbances;
and have the correction model parameters updated rarely (once a day) [5,6].

Ionospheric delay may be mitigated successfully using simultaneous pseudorange
measurements at two different carrier frequencies [6]. The dual-frequency method is
commonly applied in specially authorised GNSS positioning processes [2,7,8]. However,
the vast majority of GNSS receivers on the market utilise a single-frequency approach.
In an application of the reverse-engineering process, the dual-frequency method may be
utilised for the determination of TEC.

Thus, a GNSS receiver becomes a TEC sensor [3,9]. It may be shown that the actual TEC
encountered on the satellite signal path seen from the receiver perspective as coming at the
elevation angle E [rad] may be determined using (4) [6], where the related symbols denote
the following: STEC denotes slant (actually observed) TEC, at elevation angle E; ρ( f1) and
ρ( f2) denote simultaneously observed (measured) pseudoranges in [m] at frequencies f 1,
and f 2, respectively; bs denotes satellite bias in [m]; and br denotes receiver bias in [m].
Various implementations of the TEC estimation procedure deploy different approaches in
the estimation of satellite and receiver bias.

STEC =
ρ( f2)− ρ( f1)− bs − br

40.31 ·

[

1
f 2
2
− 1

f 2
1

] (4)

TEC observations should be normalised for satellite signals traveling different paths
and distances, passing different segments of the Earth’s ionosphere. A mapping function
m(E) was introduced to determine the normalised vertical TEC (VTEC) [2,6,8], as given in
Equations (5) and (7), with REarth denoting the Earth’s radius and h denoting height above
the mean sea level.

STEC = m(E) · VTEC (5)

m(E) =
1

√

1 −
(

REarth
REarth+h · cos(E)

)2
(6)

TEC =

√

1 −
(

REarth
REarth+h · cos(E)

)2

40.31
·

f 2
1 f 2

2

f 2
1 − f 2

2

· [ρ( f2)− ρ( f1)− bs − br] (7)
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Recent TEC prediction model developments for the purpose of GNSS position es-
timation improvement were focused on the traditional time-series techniques, with the
utilisation of spherical harmonics for GNSS position estimation improvement [10,11].
Ref. [3] proposed the adaptive GNSS-based positioning process, which respects the actual
state of the local environment for satellite positioning. Dubbed the ambient adaptive PNT,
it exploits the abundance of precise sensors accompanying GNSS receivers, such as those
in smartphones, which are capable of the GNSS PNT environment observation, as well as
trusted detailed third-party data on the same subject. The adaptiveness to the GNSS PNT
environment is based on the situation awareness obtained either using trusted third-party
data for the region in question and/or direct measurements of descriptors of the GNSS PNT
environment performed at the position of a GNSS receiver. Development of the adaptive
GNSS-based positioning process involves the introduction of advanced position estimation
methods [3], as well as observations-based and statistical learning-founded [12] prediction
correction models. While statistical learning methods have been utilised in space weather
research [13], their utilisation in satellite navigation for mitigation of the ionospheric effects
is still novel [5,9,14].

Here, we contribute to the subject with a proposal for and a demonstration of a method
for an ambient-aware tailored personalised GNSS ionospheric delay correction model de-
velopment based on observations of the local geomagnetic environment (geomagnetic field
density). The research aims at the provision of a reliable and robust GNSS TEC prediction
model based on the current observations of the immediate ambient (positioning environ-
ment) conditions and utilisation of machine learning methods for the GNSS TEC predictive
model development and operation. The proposal targets single-frequency commercial-
grade GNSS receivers, a class of GNSS receivers prevailing on the market. Considering
its intended cross-disciplinary adoption and self-sustainable personalised deployment,
the method and the correction model are anticipated to extend model development and
deployment characteristics, such as (i) accuracy and precision in terms of both the bias
and the variance, (ii) conceptual simplicity, (iii) fast model development and (iv) high
efficiency and low energy consumption for model development and deployment. The
model development and deployment methods are to serve the increasing number of GNSS
PNT processes implemented in mobile and stationary GNSS PNT applications, including
smartphones, autonomous road vehicles, aircraft, vessels and Internet-of-Things (IoT) de-
vices, with a wide range of computational capacity levels and available energy constraints.
The proposed GNSS TEC prediction model aims at the provision of an alternative to the
standard TEC correction models, such as the Klobuchar model, thus becoming an integral
component of the GNSS PNT process and algorithm.

Integrated into the GNSS PNT process and algorithm [3], the GNSS pseudorange
measurement error/TEC model aims at the provision of adaptiveness to the GNSS ambient
(positioning environment) conditions and improved mitigation of the GNSS ionospheric
delay, compared with the Klobuchar model set up as the reference (benchmark) model.

2. Methods and Materials

The GNSS ambient conditions in the immediate vicinity of a GNSS signal-collecting
mobile unit determine the degradation level of the GNSS PNT performance [6,8,15]. The
statement holds for both a traditional GNSS receiver and a mobile unit of a positioning-as-
a-service system [3]. The research presented hypotheses that the near-real-time situation
awareness of positioning environment conditions may significantly reduce positioning
performance degradation due to both natural and artificial adversarial effects. Furthermore,
it is argued here that a bespoke GNSS correction model based on the situation awareness
of the positioning environment conditions may be developed, maintained and operated by
the reception side of the GNSS system. The concept relies on the assumptions of (i) internet-
based connectivity; (ii) a mobile unit equipped with appropriate sensing devices, such as
magnetometers, to be utilised for the positioning environment condition assessment; and
(iii) the computational capacity of mobile units. All three presumptions are fulfilled in
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mass-market devices, such as smartphones, automobiles or personal computers, and will
be in a vast range of Internet-of-Things devices. The proposed method may be considered
a valuable contribution to the protection, toughening and augmentation efforts of the core
GNSS without the need for expensive and complicated infrastructure development.

The proposed GNSS TEC predictive model is aimed to serve the GNSS community, and
those utilising single-frequency GNSS receivers in particular, through harvesting ambient
condition awareness. Its purpose is to provide a valuable alternative to the standard GNSS
ionospheric correction models by exploiting the sensing, computational and information
resources available to a mobile unit (a GNSS receiver) during its operation.

The complexity of space weather, geomagnetic and ionospheric disturbances creates a
range of effects on the GNSS PNT performance and its degradation. Statistical properties of
variables describing both the ionospheric conditions and the GNSS PNT performance differ
significantly in different scenarios of the ionospheric disturbances. Separate assessments
of various scenarios of ionospheric disturbances and the GNSS PNT performance degra-
dations are, therefore, required. This research focuses on short-term rapidly developing
ionospheric disturbances, one of the extreme scenarios of ionospheric disturbances that
causes unexpected, fast and significant GNSS PNT performance degradation.

This section details the proposal of the concept, method and model, as well as material
(data) used in practical implementation for a proof-of-principle demonstration.

2.1. TEC/GNSS Ionospheric Delay Prediction Model Development

Statistical learning methods for prediction model development and real-time obser-
vations of geomagnetic conditions and GNSS pseudorange measurements are used in the
candidate sub-equatorial short-term rapidly developing ionospheric storm TEC prediction
model. The Bx, By and Bz components of the geomagnetic field density vector in [T] are
considered predictors of the TEC prediction model. The TEC experimental values are
derived from the raw GPS pseudorange observations, using the common methodology
described in Section 1, Equation (7). TEC derivation using model (7) in Section 1 is selected
in consideration of the computational capacity of the targeted market of single-frequency
commercial-grade GNSS receivers, mobile devices containing them and positioning-as-a-
service systems. The experimental TEC values are considered true values for the purpose
of the GNSS TEC predictive model development. TEC is considered the outcome of the
sub-equatorial short-term rapidly developing ionospheric storm TEC prediction model.
The TEC prediction model development procedure is outlined in Figure 2.

 

Figure 2. A methodology for TEC prediction model development.

The Disturbance Storm-Time (Dst) index, a geomagnetic condition descriptor, is con-
sidered a selector of short-term rapidly developing geomagnetic storm scenarios [4,16].
Geomagnetic field density component observations and raw dual-frequency GNSS pseu-
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dorange observations collected during the selected short-term and rapidly developing
geomagnetic and ionospheric storms are aggregated into a single set of original observa-
tions. Raw dual-frequency GNSS pseudoranges are used for the derivation of experimental
TEC values. The exploratory statistical analysis is performed on components of geomag-
netic field density (predictors) and derived TEC (outcome) to determine their statistical
models. Results of the exploratory statistical analysis are used in the selection of statistical
learning methods for candidate TEC prediction model developments. Models developed
are validated on the independent testing set of TEC and geomagnetic field density com-
ponent observations. The performance of candidate models is compared mutually and
with the performance of the standard Klobuchar model to identify the best performer to
be pronounced the sub-equatorial short-term rapidly developing ionospheric storm TEC
prediction model.

2.2. Statistical Learning-Based Model Development Methods

This research embraces the concept of statistical learning on experimental observations
of related statistical variables [17,18] for the development of candidates of the sub-equatorial
short-term rapidly developing ionospheric storm TEC prediction model. The results of
exploratory statistical analysis of the aggregated set of predictors and outcome obser-
vations lead to the selection of two statistical learning methods for the development of
candidates for the sub-equatorial short-term rapidly developing ionospheric storm TEC
prediction model.

2.2.1. Boosted Generalised Additive Model (GAMB) Development Method

The boosted generalised additive model (GAMB) development method is a machine
learning method based on the generalised additive model introduced by [17] and its
boosting enhancement [18–20]. The method is aimed at modelling the non-linear and non-
parametric relations between the target variable and predictors. The generalised additive
model (GAM) method allows for modelling the non-linear and non-parametric relations
between the expectation of the target variable y and predictors {x1, x2, . . ., xn} by extending
the concept of linear regression through the development of the smoothing function g(E(y))
of one or more predictors (8), based on the penalised regression approach [17], with E(y)
denoting the expectation of y, β0 denoting a constant and f () denoting a function.

g(E(y)) = g(y ) = βo +
n

∑
i=1

fi(xi) (8)

The boosting principle contributes to model development in a sense similar to the
random forest approach. Through the boosting process, the predictions of multiple additive
models, trained on subsets of the original observations, are combined in the optimisation
sense to yield the response of the GAMB model. The GAMB model benefits from the de-
ployment of boosting in terms of a reduction in the bias and variance of individual/simple
models, thus achieving improved accuracy and robustness.

The boosting process is of iterative nature and involves the following repeating
tasks: (i) development of a weak learner (a simple GAM) based on the observation subset,
(ii) calculation of residuals from the weak learner, (iii) calculation of the gradient of the
loss function with respect to residuals, (iv) update of the weak learner and (v) repetition of
(i) to (iv) until the optimisation criterion is reached [20].

The GAMB model development method has been implemented in various machine
learning (ML) programming environments, including the R programming environment for
statistical computing [19–21].

2.2.2. Stochastic Gradient Boosting (SGB) Model Development Method

The stochastic gradient boosting (SGB) model development method was introduced
by [22]. Given a system of outcome variable y and a set of explanatory variables (predictors)
x = {x1, x2, . . . xn} with related values arranged in a training set {yi, xi}1

N, the method is
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to yield a function F’(x) that maps x to y for all of their values, so the expected value E
of a specified loss function Ψ(y, F(x)) is minimised, creating an optimisation problem, as
described with (9).

F′(x) = argmin
F(x)

Ey,xΨ(y, F(x)) (9)

The boosting procedure is implemented through F’(x) approximation with a polyno-
mial expansion of F(x) in the form as given by (10).

F(x) =
M

∑
m=0

βmh(x; am) (10)

Function h(x; am) is called the ‘base learner’ and is usually selected as a simple function
with parameters a = {a1, a2, a, . . . aM}. In the gradient tree boosting method deployment,
the ‘base learner’ is defined as an L-terminal node regression tree.

An iterative method may be established to solve for F(x), starting with an initial guess
of F0(x) and continuing with the procedure depicted in (11).

(βm, am) = argmin
β,a

M

∑
i=1

Ψ(yi, Fm−1 + βh(xi; a)) Fm(x) = Fm−1(x) + βmh(x; am) (11)

At every iteration, a regression tree partitions the x-space into L non-overlapping
sub-spaces {Rlm}l=1

L and determines a separate constant value of h for each sub-space. The
approach reduces the problem to a ‘location’ estimate γlm based on the Ψ criterion, as given
by (12).

γlm = argmin
γ

∑
xi

Ψ(yi, Fm−1(xi) + γ) (12)

The iterative procedure for Fm(x) determination may be expressed with Equation (13),
where the parameter ν, 0 < ν < 1, controls the learning rate.

Fm(x) = Fm−1(x) + νγlm1(x ∈ Rlm) (13)

Randomness was introduced in the gradient boosting method with the introduction of
a sub-sample of the training data drawn from the original training set without replacement
using a random permutation {πi}1

N of the integers {1, 2, . . ., N} to extract a random

training sub-sample {yπ (i), xπ (i)}1
Ñ of the size Ñ < N. The enhancement completes the

definition of the SGB method, as outlined by [22,23]. The SGB method is summarised in
Algorithm 1 below.

Algorithm 1 Stochastic Gradient Boosting (SGB) Methodology

1: F0(x) = argmin
γ

∑
N
i=1 Ψ(yi, γ)

2: for m = 1 to M do

3: {π(i)}N
1 = rand_perm{i}N

1

4:
∼
yπ(i)m = −

[

∂Ψ(yπ(i) ,F(xπ(i)))
∂F(xπ(i))

]

F(x)=Fm−1(x)
, i = 1,

∼
N

5: Rlm
L
1 = L − terminalnodetree

(

∼
yπ(i)m, xπ(i)

∼
N

1

)

6: γlm = argmin
γ

∑
xπ(i)∈Rlm

Ψ
(

yπ(i), Fm−1

(

xπ(i)

)

+ γ
)

7: Fm(x) = Fm−1(x) + ν · γlm1(x ∈ Rlm)
8: end

The presented research utilised the stochastic gradient boosting method implementation
in the caret package [12] of the open-source R environment for statistical computing [21].
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2.2.3. Bagged CART (BCART) Model Development Method

The bagged classification and regression tree (CART) model is an ensemble of decision
trees developed on the subsets of the original set of observations [24]. The bagged CART
decision is made as an average of decisions of individual decision trees in the BCART
model [23], as depicted in Figure 3.

 

Figure 3. The bagged CART model development method.

The BCART method is implemented in the caret package [12] of the R environment
for statistical computing [21].

2.2.4. Model Performance Assessment

The residual analysis-based model performance assessment procedure [12,23,25] is
utilised here to examine the properties and success of developed candidates for the TEC
prediction model and to allow for comparison between the candidate models and the
standard Klobuchar model.

A residual r is defined as a difference between the predicted yi and observed y
outcome values for the same set of predictor values, as given in (14).

ri = yi − y (14)

Performance indicators are selected to describe the quality of a model assessed as
follows. The predicted vs. observed (P-O) diagram, a graphical representation of the
prediction–observation outcome pairs, extends the goodness of fit and indicates the range
of outcome values in which the model performs well. The root-mean-square error (RMSE)
value of a set of residuals extends the ability of the model to describe bias (systematics of a
phenomenon considered). RMSE is determined using (15).

RMSE =

√

1

N
·
(

r2
1 + r2

2 + ... + r2
N

)

=

√

1

N
· ∑

i=N
i=1

r2
i (15)

The coefficient of determination, defined using (16), and commonly known as the R2

coefficient, extends the ability of the model to describe the original variance contained in
the original data set.

R2 = 1 −
∑

i=N
i=1 r2

i

∑
i=N
i=1 (yi − y)2

(16)
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The R2 coefficient of determination extends the percentage of the variance of the
original data set (sample) explained with the regression model. The performance indicator
defined by (16) is related to the number of predictors p used in the model and the number
of observations in the original set of observations, n. The more objective performance
indicator, called the adjusted coefficient of determination (adjR2) and derived from the R2

coefficient, is defined in (17), with n denoting number of observations in the sample and p
denoting number of predictors.

adjR2 = 1 −
(

1 − R2
) n − 1

n − p − 1
(17)

The adjR2 coefficient allows for comparison between models with training sets of
different sizes and of different numbers of predictors.

The three aforementioned indicators are used in the performance assessment of the
candidates for the sub-equatorial short-term rapidly developing ionospheric storm TEC
prediction model. A tailored model performance assessment software is developed in the
R environment for statistical analysis.

2.3. Overview of the Four Rapid Short-Term Geomagnetic Storms Scenarios and Data

Ionospheric conditions are the prime individual source of GNSS positioning per-
formance degradation [1,26]. Ref. [27] proposed the space weather–GNSS positioning
performance coupling model that is utilised as a framework for this research. We hy-
pothesise that TEC, as the result of the ionospheric conditions and the model outcome,
may be modelled based on the local geomagnetic conditions, represented and described
solely by the near-real-time observations of the local geomagnetic field density. In that
sense, TEC would serve as the outcome and components of the geomagnetic field den-
sity as predictors of the proposed TEC prediction model. With a reference to the space
weather–GNSS positioning performance coupling model [27], the geomagnetic conditions
result from space weather conditions, and TEC further affects the quality of satellite-based
positioning. This research contributes to the description of the geomagnetic conditions–TEC
development–GNSS pseudorange measurement coupling and allows for the prediction of
GNSS positioning performance deterioration due to the ionospheric delay of a GNSS signal.

A short-term rapidly developing ionospheric disturbance has the potential for a sud-
den GNSS positioning performance deterioration of a dominantly random nature. Prospects
for the correction of such a source of GNSS positioning error using traditional global stan-
dard models are rather dire. Furthermore, the extent of the ionospheric disturbance effects
is more pronounced in sub-equatorial regions by a specific pattern of free electron transfer
in the upper atmospheric layers [4]. This research aims at a statistical description of the
class of short-term rapidly developing ionospheric disturbances to support the tailored
personalised ambient-aware GNSS TEC prediction model for improved PNT performance.

The development of a geomagnetic storm takes a common three-phase pattern, which
is described in morphological terms using the Disturbance Storm-Time (Dst) index [4],
although the ability of the Dst index to serve as a predictor of GNSS performance degra-
dation events was challenged [16]. The Dst index points out the geomagnetic events of
global significance, although it is based on processed observations in sub-equatorial re-
gions. A geomagnetic storm starts with a short-duration positive phase, when the Dst

index increases compared with a common condition. The positive phase of a geomagnetic
storm is then followed by a rapid negative through phase, when the Dst index suddenly
drops significantly towards the extreme negative values. The rapid negative through phase
transforms into a prolonged recovery phase, during which Dst index values gradually rise
towards the pre-storm conditions.

A Dst-based geomagnetic storm description is used here for the selection of the short-
term and rapidly developing geomagnetic events used as scenarios of the research pre-
sented. Scenarios are selected additionally based on the additional criterion of the absence
of any considerable geomagnetic disturbance at least a week prior to the geomagnetic
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storm outbreak to avoid a possible memory effect. The time series of the Dst index values,
taken from the internet archive [28], for the four geomagnetic storms selected are depicted
in Figure 4.

Figure 4. A Dst-based selection of rapidly developing short-term geomagnetic storms in mid-March,

2015; late May, 2017; early September, 2017; and late September, 2017.

The short-term rapidly developing geomagnetic storms of global outreach were iden-
tified in mid-March 2015, May 2017 and early and late September, 2017. All four storms
lasted for three days each, extending a three-phase development pattern of a significant ge-
omagnetic field disruption, with the potential to affect TEC development and, consequently,
the GNSS positioning performance.

The selected class of geomagnetic storms establishes the four scenarios for the research
presented. The March 2015 storm, known also as the St Patrick’s Day storm, occurred
between 17 March 2015 (DOY76 in 2015) and 19 March 2015 (DOY78 in 2015). The May 2017
storm occurred between 27 May 2017 (DOY147 in 2017) and 29 May 2017 (DOY149 in 2017).
The early-September 2017 storm occurred between 7 September 2017 (DOY250 in 2017) and
9 September 2017 (DOY252 in 2017). The late-September, 2017 storm occurred between
26 September 2017 (DOY269 in 2017) and 28 September 2017 (DOY271 in 2017).

The original experimental observations of TEC and geomagnetic field density, aimed
for utilisation in the TEC prediction model development, should be collected in the close
vicinity and provided by trusted sources. Two internet-based trusted sources are identified
that provide the required data collected in the sub-equatorial region of the Northern
Territories, Australia, as detailed in subsequent sections.

2.4. True TEC Derivation from Dual-Frequency GPS Pseudoranges at IGS Reference Station
Darwin, NT

The International GNSS Service [29] operates a global network of stationary GNSS
reference stations that systematically collect the raw GNSS pseudoranges uncorrected
for ionospheric effects every 30 s on a daily basis. Structured in the RINEX format, the
internet-based IGS observation archive serves as an invaluable source of experimental
GNSS-related observations.

Single-frequency commercial-grade GNSS receivers on the market utilise different
combinations of GNSS signals, with the GPS ones being common with all of them. For that
reason, this research utilises the GPS pseudorange observations for the derivation of exper-
imental (true) TEC. The GPS pseudorange observations taken at the IGS reference station
in Darwin, NT, Australia (Figure 5), for four scenarios of geomagnetic storms identified in
Section 2.3 are used in this research. The selection of the IGS Darwin reference stations was
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driven by its position in the sub-equatorial region, with pronounced ionospheric distur-
bance effects and with its proximity to the INTERMAGNET [30] Kakadu, NT, Australia,
reference station. The true TEC is estimated from dual-frequency GNSS pseudorange
observations using the procedure outlined in (7) (Section 1), with the GPS-TEC Programme
software, revision 3.0, developed by Dr Gopi Seemala [31]. The GPS-TEC Programme
deploys estimates of the satellite bias bs as provided by the University of Bern. The receiver
bias br is estimated by using the re-scaling standardisation procedure applied to the raw
GPS TEC estimates [31].

 

Figure 5. Positions of the IGS reference station Darwin, NT, and the INTERMAGNET reference

station Kakadu, NT. Figure designed with bespoke software in the R environment for statistical

computing using the leaflet R package and icons and the Open Street Map background layer.

2.5. Geomagnetic Field Density Observations at INTERMAGNET Reference Station Kakadu, NT

The INTERMAGNET operates the world network of stationary reference sites that
systematically collect the observations of the geomagnetic field density vector components
Bx, By and Bz [30]. The observation procedure requires the measurements to be taken on a
daily basis, every minute. Collected observations are stored in structured text files openly
available to interested parties. Observations taken at the INTERMAGNET reference station
Kakadu, NT, Australia (Figure 5), for four scenarios of geomagnetic storms identified in
Section 2.3 are used in the presented research.

The selection of the INTERMAGNET Kakadu reference stations as the source of
geomagnetic field density observations was driven by its proximity to the IGS Darwin
reference stations. The research assumes similar geomagnetic and ionospheric conditions,
resulting in similar GNSS pseudorange measurement degradations, in the locations of
two reference stations separated by a distance of 178.5 km.

2.6. Material Summary Per Geomagnetic Storm Scenario

As described in Section 2.2, this research utilises four sets of data (time series) per
scenario: TEC values and three components of the geomagnetic field density vector. Data
sets of geomagnetic field density components and the associated experimental TEC are
statistically analysed to assist the development of the ambient-aware GNSS TEC prediction
model for PNT in the case of short-term rapidly developing ionospheric storms. The
results of the statistical analysis are presented in a box-plot form. The exploratory statistical
analysis results are summarised in the rest of this section for the four scenarios defined in
Section 2.3.

2.6.1. The Mid-March 2015 Geomagnetic Storm Scenario (The St Patrick’s Day 2015 Storm,
Storm 1)

Box plots of predictors Bx, By and Bz and the experimentally derived TEC target are
presented in Figure 6.
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Figure 6. Box plots of predictors Bx, By and Bz and target TEC data during Storm 1.

The results of the exploratory statistical analysis of related time series of TEC, Bx, By

and Bz variables show that none of them follow a normal statistical distribution. The TEC,
By and Bz variables extend a number of outliers, with the respective long right tails of
the corresponding experimental statistical distributions. The Bx variable extends several
outliers at the left tail of its experimental statistical distribution.

2.6.2. The Late-May 2017 Geomagnetic Storm Scenario (Storm 2)

Box plots of predictors Bx, By and Bz and the experimentally derived TEC target are
presented in Figure 7.

Figure 7. Box plots of predictors Bx, By and Bz and target TEC data during Storm 2.

The results of the exploratory statistical analysis of related time series of TEC, Bx,
By and Bz variables show that none of them follow a normal statistical distribution. The
TEC variable yields numerous outliers at the right tail, while the Bx and By variables
extend outliers at the left tails of their corresponding experimental statistical distributions.
Additionally, the By variable yields a few outliers at the right tail.

2.6.3. The Early-September 2017 Geomagnetic Storm Scenario (Storm 3)

Box plots of predictors Bx, By and Bz and the experimentally derived TEC target are
presented in Figure 8.
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Figure 8. Box plots of predictors Bx, By and Bz and target TEC data during Storm 3.

The results of the exploratory statistical analysis of related time series of TEC, Bx, By

and Bz variables show that none of them follow a normal statistical distribution. While
TEC values extend a few outliers on the right tail of the statistical distribution, the Bx

and By variables yield numerous outliers at both tails of their corresponding experimental
statistical distributions.

2.6.4. The Late-September 2017 Geomagnetic Storm Scenario (Storm 4)

Box plots of predictors Bx, By and Bz and the experimentally derived TEC target are
presented in Figure 9.

Figure 9. Box plots of predictors Bx, By and Bz and target TEC data during Storm 4.

The results of the exploratory statistical analysis of related time series of variables
show TEC and Bz as following a normal statistical distribution. The Bx and By variables
experienced a number of outliers, with slight tails, left and right.

2.6.5. Analysis and Discussion

Overall, the exploratory analysis of TEC and geomagnetic field density component
observations leads to the conclusion of short-term rapidly developing storms as a well-
described class of space weather events affecting the GNSS positioning performance.
Additional analysis is conducted to obtain a deeper insight into the nature of TEC dynamics
during four geomagnetic storms under consideration. The Cullen–Frey method [32] is
applied to estimate the theoretical statistical distribution that fits data in all four TEC sets

203



Remote Sens. 2024, 16, 3051

concerned. The Cullen–Frey method examines the relationship between kurtosis and the
square of skewness of bootstrapped samples (subsets) of the original data.

The Cullen and Frey graph analysis reveals the beta statistical distribution as the most
promising fit to the experimental data of all four cases considered. Three of them extend
a high similarity of the theoretical statistical distribution fit, while the May 2017 storm
extends a somewhat larger square of skewness. The findings confirm the case of short-term
rapidly developing geomagnetic storms as a well-defined class of GNSS-related space
weather events.

Additional exploratory statistical analysis is performed to identify the processes be-
hind TEC dynamics for all four cases of rapidly developing short-term geomagnetic storms,
including the following statistical tests [33]: (i) the two-sample t-test to determine whether
the means of two sets of TEC observations of different geomagnetic storms are equal, (ii) the
two-sample F-test to determine whether the variances of two sets of TEC observations of
different geomagnetic storms are equal and (iii) the two-sample Kolmogorov–Smirnoff
test to determine whether two sets of TEC observations of different geomagnetic storms
follow the same statistical distribution. The exploratory statistical analysis finds that no
pairs of TEC sets share either the same mean, variance or result from the same statistical
distribution. Given the complexity of the TEC generation processes, the results of the
exploratory analysis confirm the expectations. Additionally, the results of statistical tests
indicate the need for an advanced method for TEC correction model development. The
inference leads to the selection of machine learning-based methods as a suitable approach
in the solution of TEC prediction model development.

The resulting Cullen and Frey diagrams are depicted in Figure 10.

Figure 10. Cont.
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Figure 10. Cullen and Fray diagrams of four TEC sets under consideration, starting from top to

bottom: St Patrick’s Day storm, (DOY76–DOY78 in 2015); May 2017 storm (DOY147–DOY149 in

2017); early-September 2017 storm (DOY250–DOY252 in 2017); and late-September 2017 storm

(DOY269–DOY271 in 2017).

The Cullen and Fray analysis, the exploratory data analysis and statistical tests [33]
are performed in the R environment for statistical computing [21] using the R package
fitdistrplus [32] for the former and the standard packages for the latter analyses.

3. Research Results

We aggregate the time series of all four scenarios into a single pool of observations
while keeping the variable-related structure, thus composing a set of observations as a
representative sample comprising descriptions of different variances of short-term rapidly
developing geomagnetic storms. The aggregated original pool consists of 13,817 obser-
vations of TEC (outcome) and Bx, By and Bz (predictors) variables from the four selected
scenarios (Section 2.3). We split the pool of observations into training (model develop-
ment) and testing (model evaluation) subsets of the original pool of observations using the
80–20 Pareto principle [34,35]. The cross-validation procedure is involved in the develop-
ment of both the SGB-based and BC-based TEC prediction model candidates to mitigate
the effects of a non-normal experimental distribution and randomisation involved in obser-
vation selection for training and testing subsets of the original data. The testing subset is
used for the assessment of Klobuchar model performance to provide a benchmark (refer-
ence) model for additional comparisons of the quality of developed TEC prediction model
candidates. Section 2.2.4 outlines the method performance assessment criteria, including
root-mean-square error (RMSE) for bias modelling performance assessment, the adjusted
coefficient of determination (adjR2) for variance modelling performance assessment and
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the P-O diagram for graphical assessment of the model agility. Model development and
model performance validation tasks are performed using the tailored software our team
developed in the R environment for statistical computing. Assessment results of the ability
of candidate PPR-based, SGB-based, BCART-based and Klobuchar models to describe bias
and variance in the testing subset are depicted in Figure 11 and outlined in Table 1.

 

(a) (b) 

Figure 11. Performance assessment results of TEC prediction model candidates (BC denotes bagged

CART-based model, SGB denotes stochastic gradient boosting-based model, GAMB denotes boosted

generalized additive model, and K denotes Klobuchar (standard) GPS ionospheric delay correc-

tion model), where RMSE (a), denotes the root-mean-square error (RMSE) value and (b) adjusted

coefficient of determination (adjR2) denotes the adjusted coefficient of determination value.

The Klobuchar model, the standard GPS error correction model considered a reference
model in this research, performs poorly during short-term rapidly developing geomag-
netic storms in sub-equatorial regions. It extends a large RMSE and describes only 25%
of the original variance. Contenders for the TEC prediction model perform far better
than Klobuchar, in support of the hypothesis of improved GNSS ionospheric correction
estimation based solely on the near-real-time local geomagnetic field density vector obser-
vations. The PPR model reduces by nearly 30% the Klobuchar model RMSE, and doubles
the original variance coverage, compared with the Klobuchar model. The BCART model
halves the Klobuchar model RMSE and covers more than 76% of the original variance. The
SGB-based TEC prediction model extends an even better RMSE value than the BCART
model and is capable of modelling more than 81% of the original variance.

Statistical learning models develop as a result of experience. They may be designed to
improve their predictive capacity and performance. The time required to complete model
development may indicate the computational effort needed to develop the model as related
information for GPS positioning process developers and operators. Model development
times for the TEC predictive model contenders are examined, with the results presented in
Table 1.

Table 1. TEC prediction model development time.

Bagged CART
(BCART)

Stochastic Gradient
Boosting

(SGB)

Boosted Generalized
Additive Model

(GAMB)

Model development time [s] 17.89 32.15 13.43

The SGB-based model requires the most time to develop, almost twice as much as
needed for BCART model development. Considering the performance accomplished, the
selection of the BCART model may be a good trade-off for applications where computing
resources are critical. The PPR model requires just about one-fifth of the SGB model
development time, which trades with a significantly reduced performance in comparison
with the SGB model.

The P-O diagrams reveal the agility of the TEC model candidates, as shown in Figure 12.
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Figure 12. Prediction vs. observed (P-O) diagrams of the projection pursuit regression (PPR), bagged

CART (BCART), stochastic gradient boosting (SGB), boosted generalized additive model (GAMB)

and Klobuchar (K) TEC prediction models, with reference line (red).

Considering the performance assessment indices defined in Section 2.2.4, the stochas-
tic gradient boosting (SGB) TEC prediction model extends the best performance during
short-term rapidly developing geomagnetic storms in the sub-equatorial region of all
three models assessed.

4. Discussion

This research addresses the development of the ambient-aware GNSS TEC prediction
model suitable for integration within the ambient-aware GNSS PNT framework as an
alternative to standard GNSS ionospheric correction models, such as the Klobuchar model.
The proposed ambient-aware GNSS TEC prediction model development methodology is
demonstrated in the scenario of short-term rapidly developing ionospheric storms, one of
the extreme cases of ionospheric conditions that may cause significant degradation of
the GNSS PNT performance. The proposed ambient-aware GNSS TEC prediction model
returns the TEC estimate for the particular case of the ionospheric conditions, determined
by the values of predictors (Bx, By and Bz) at the time of prediction.

Based on the statistical properties of four selected cases of short-term rapidly develop-
ing ionospheric storms, three ambient-aware GNSS TEC prediction models are developed
and their performance is assessed and compared mutually and in relation to the Klobuchar
model’s performance in the same cases. As a result, the stochastic gradient boosting (SGB)
TEC prediction model is found to be the best performer in the group. The SGB GNS TEC
prediction model covers bias with a root-mean-square error (RMSE) of 4.28 TECU, a 60%
improvement compared with the Klobuchar model. Further to this, the stochastic gradient
boosting (SGB) TEC prediction model describes 82% of the original variance in derived ex-
perimental TEC observations, compared with just 25% as extended by the Klobuchar model.
The stochastic gradient boosting (SGB) TEC prediction model requires more time and
effort to be developed. However, once developed, it provides the best performance, with
reasonable execution time concerning deployment in modern computationally improved
devices, such as smartphones, IoT devices, cars, drones and others.

The proposed GNSS TEC prediction model aims at deployment within the ambient-
aware GNSS PNT framework, either on mobile devices or within the positioning-as-a-
service framework. Particular concern is given to implementation on devices utilising
single-frequency GNSS PNT, with the aim to provide an alternative to standardised global
ionospheric correction models.
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The implementation of the proposed method and the model are rather simple and
straightforward in modern software-defined radio (SDR)-based GNSS receivers and even
more elegant and efficient in the positioning-as-a-service distributed GNSS processes. Utili-
sation of the SDR concept renders the GNSS PNT process and algorithm transparent and
flexible in terms of improvement of the existing PNT algorithm and for the introduction
of new services by exploitation of methods and techniques of statistics, computer science
and mobile communications. We demonstrated the deployment of the proposed ambient-
aware GNSS TEC prediction model within a laboratory ambient-aware PNT framework,
which includes the open-source RTKLIB SDR, in both real-time and post-processing simu-
lations. In the post-processing scenario, the ionospheric corrections were calculated using
the proposed ambient-aware GNSS TEC prediction model, with data structured in the
IONEX format.

Sources of data may be either the mobile unit’s own measurements of the position-
ing environment conditions (components of the geomagnetic field in the vicinity of a
GPS/GNSS receiver) using the unit’s own sensors, trusted third-party data (NOAA, NASA,
EU Copernicus, INTERMAGNET, etc.) delivered through a dedicated and encrypted com-
munications protocol via the mobile internet or both. The actual benefit achieved depends
on the mobile unit’s ability to measure the geomagnetic field components accurately and
correctly and on the third party’s ability to provide near-real-time data of high accuracy.
Furthermore, thorough and systematic consideration should be given to communications
safety and to means of deployment and operation of machine learning methods to safe-
guard them from adversarial cyber-attacks [36,37]. A case of geomagnetic data-based
spoofing may be overcome with authentication, sensor information fusion and additional
analysis of time series of data.

This research provides the proposal for the method, and its proof-of-principle justi-
fication, thus establishing a solid framework for further refinements and developments
planned to be accomplished by this group. Future research will focus on model devel-
opment and validation for different levels of ionospheric disturbances and ambients of
PNT (geographic latitudes, urban/rural environments, inclusion of information from other
ambient sensors, etc.).

5. Conclusions

Satellite navigation has become one of the pillars of modern civilisation and an essen-
tial component of the national infrastructure. Space weather and ionospheric conditions
render the prime source of single-frequency GNSS PNT service disruptions and degrada-
tions. The PTA of GNSS PNT services requires novel approaches in tackling the ionospheric
effects on GNSS PNT. Standard global ionospheric correction models cannot mitigate the
local ionospheric disturbances, as well as those of high dynamics. A self-adaptive posi-
tioning environment-aware GNSS position estimation algorithm, which engages a bespoke
machine learning-based GNSS ionospheric correction model, offers huge promises in the
PTA of GNSS. Here, we show that even in the case of demanding ionospheric conditions,
such as during a short-term fast-developing geomagnetic storm in a sub-equatorial region,
a machine learning-based environment-aware GNSS ionospheric correction model devel-
oped and operated by a position estimation entity, either a traditional GNSS receiver or a
positioning-as-a-service system, may provide a substantial improvement over the existing
global Klobuchar model, which is considered as a benchmark.

This research evaluates three candidates for the ambient-aware GNSS PNT ionospheric
correction models based on machine learning methods and large sets of experimental
observations of geomagnetic field density components as predictors and TEC/single-
frequency GPS ionospheric delay as the target. Machine learning development methods
for three models are selected based on the results of the exploratory statistical analysis
of predictors and target observations. The performance of the three GPS ionospheric
model candidates, (i) the bagged CART model, (ii) the boosted generalized additive model
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(GAMB) and (iii) the stochastic gradient boosting (SGB) model, are assessed and compared
with the Klobuchar model as the benchmark.

The ambient-aware SGB TEC/GNSS pseudorange measurement error predictive
model is proposed as the result of the comparison, based on experimental observations
and a statistical/machine learning model development technique, with the component
of the geomagnetic field density vector as the sole predictor and TEC as the target. The
TEC prediction model is developed and validated for GNSS ionospheric delay correc-
tions during short-term rapidly developing geomagnetic storms in a sub-equatorial region,
which significantly reduces (60%) bias error compared with standard Klobuchar model and
describes 82% of the original TEC variance. The research finds Dst to be a good classifier
for the ionospheric condition scenarios.

Further research is needed to refine the methodology for machine learning-based
model development method selection and validation to be deployed for various classes
and scenarios of ionospheric conditions and geographic latitudes, enhance the robustness
of the machine learning-based model to safe-guard it against malicious attacks and es-
tablish an architecture-agnostic framework for operational deployment of the resulting
optimal machine learning-based and positioning environment-aware bespoke ionospheric
correction model that contributes to GNSS resilience development through advanced
PTA deployment.
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Abstract: In the context of rising temperatures and increasing humidity in Northwest China, substan-

tial gaps remain in understanding the mechanisms of land–atmosphere cloud–precipitation coupling

across the northeastern Tibetan Plateau (TP), Loess Plateau (LP), and Huangshui Valley (HV). This

study addresses these gaps by investigating cloud properties and precipitation patterns utilizing the

Fengyun-4 Satellite Quantitative Precipitation Estimation Product (FY4A-QPE) and ERA5 datasets.

We specifically focus on Lanzhou, a pivotal city within the LP, and Xining, which epitomizes the

HV. Our findings reveal that diurnal variations in precipitation are significantly less pronounced

in the eastern regions compared to northeastern TP. This discrepancy is attributed to marked diur-

nal fluctuations in convective available potential energy (CAPE) and wind shear between 200 and

500 hPa. While both cities share similar wind shear patterns and moisture transport directions, Xining

benefits from enhanced snowmelt and effective water retention in surrounding mountains, resulting

in higher precipitation levels. Conversely, Lanzhou suffers from moisture deficits, with dry, hot winds

exacerbating the situation. Notably, precipitation in Xining is strongly correlated with CAPE, influ-

enced by diurnal variability, and intensified by valley and lake–land breezes, which drive afternoon

convection. In contrast, Lanzhou’s precipitation exhibits a weak relationship with CAPE, as even

elevated values fail to generate significant cloud formation due to insufficient moisture. The ongoing

trends of warming and humidification may lead to improved precipitation patterns, especially in the

HV, with potential ecological benefits. However, concentrated rainfall during summer afternoons

and midnights raises concerns regarding extreme weather events, highlighting the susceptibility of

the HV to geological hazards. This research underscores the need to further explore the uncertainties

inherent in precipitation dynamics in these regions.

Keywords: northeastern Tibetan Plateau; diurnal cycle; cloud; precipitation

1. Introduction

Renowned as “the roof of the world” for its towering average elevation exceeding
4000 m, the Tibetan Plateau (TP), located at 26◦00′–39◦47′N, 73◦19′–104◦47′E, is also hailed
as “the Asian water tower” because it nurtures the origins of major Asian rivers like the
Yangtze, Yellow, and Lancang [1]. Precipitation across the TP is pivotal in sustaining
these vital waterways, while its thermal output significantly contributes to atmospheric
energy dynamics [1–3]. Furthermore, the TP profoundly influences precipitation patterns
in adjacent and downstream regions [4–7]. Since the 1980s, Northwest China has witnessed
a remarkable climatic shift from a “warm and dry” to a “warm and wet” era. This shift is
evidenced by increased precipitation, runoff, and glacier melt, a significant rise in inland
lake levels, and an escalation in flood events. Concurrently, there have been improvements
in vegetation and a reduction in the frequency of dust storms [8].
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Accurately capturing the diurnal cycle of clouds and precipitation patterns over the
TP through the integration of remote sensing technologies, ground-based observations, and
modeling efforts is pivotal for unraveling the intricate weather and climate dynamics within
this region, as exemplified by notable atmospheric experiments such as the Second (TIPEX2)
and Third Tibetan Plateau Atmospheric Experiments (TIPEX3) [9]. Previous research, based
on observations and simulation outcomes, has delineated that China experiences three
primary rainy seasons: the pre-summer rainy season in southern China (preceding the
mei-yu period), the mei-yu season itself, and the midsummer rainy season [10–14]. Within
the TP, the primary rainy seasons manifest from June to August, encompassing both the
mei-yu and midsummer seasons, with total summer precipitation averaging below 400 mm,
lower than in neighboring regions [15]. The monthly mean precipitation rate approximates
0.3 mm h−1, while event-specific precipitation rates range from 1 to 20 mm h−1, yielding
an average daily precipitation of less than 15 mm [16,17]. Notably, cloud tops frequently
soar above 12 km above ground level (AGL), occasionally exceeding 16 km AGL [18],
highlighting the unique meteorological characteristics of this region.

Summer precipitation over TP exhibits a distinctive diurnal cycle marked by regional
variations. In central TP, precipitation peaks in the evenings, displaying the most signif-
icant fluctuations [19–22]. The eastern TP foothills experience nocturnal rainfall before
midsummer [23–26], while Himalayan valleys predominantly receive precipitation from
midnight to sunrise hours, accompanied by a transition of cloud cover from ridges to
valleys [27]. The diurnal patterns of precipitation within the East Asian Summer Monsoon
(EASM) region are intricately shaped by a myriad of factors, including monsoonal flow,
sea–land breeze, boundary-layer dynamics, low-level jets, and inertial oscillations within
the mid-troposphere (~500 hPa) of the horizontal wind field [28–30]. Cao et al. (2022)
examined the diurnal variation and influencing factors of summer precipitation and cloud
parameters over TP and Sichuan Basin (SB). They found that, during the mei-yu season,
the daily maximum precipitation and cloud parameters over TP occur in the evening,
while the minimums occur in the morning. Over TP, CAPE significantly impacts precip-
itation, whereas low-level winds and cloud liquid water content in SB are the primary
influences [31].

Satellite precipitation observations provide global-scale data that surpass the capa-
bilities of conventional rain and snow gauges and surface-based radar measurements.
Numerous advanced satellite algorithms [32–39], such as Fengyun-4 Satellite Quantita-
tive Precipitation Estimation Product (FY4A-QPE) [39], leverage infrared and passive
microwave data for improved accuracy. However, mountainous regions pose significant
challenges for these satellite products. Furthermore, the spatial distribution of cloud optical
thickness and the cloud water path over TP, as derived from satellite retrievals, are closely
linked to increases in water-vapor transport flux divergence.

As temperatures rise and humidity increases across Northwest China, northeastern
TP exhibits a notable transition in topography from the Kunlun Mountains in the west
to the Qilian Mountains in the east. This topographical gradient sharply contrasts with
the SB in southwestern TP, suggesting potential disparities in the diurnal characteristics
of clouds and precipitation between these regions. Significant differences in precipitation
patterns have already been observed between the Loess Plateau (LP) and the Huangshui
Valley (HV), highlighting the necessity for a comprehensive investigation [31]. However,
the mechanisms of land–atmosphere cloud–precipitation coupling over these areas remain
poorly understood. We used Fengyun-4 satellite’s FY4A-QPE product with the ERA5
reanalysis data to delineate northeastern TP into two distinct subregions. We specifically
focus on Lanzhou, a pivotal city within the LP, and Xining, which epitomizes the HV.
Notably, these two cities are situated less than 200 km apart. We then analyzed the diurnal
variations in cloud parameters and precipitation during the meiyu and midsummer periods
to elucidate the underlying mechanisms that drive these regional disparities. This study
contributes to a deeper understanding of this vital region’s complex interactions between
topography, atmospheric conditions, and precipitation dynamics.
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2. Study Area and Data Description

2.1. Fengyun-4 Satellite Quantitative Precipitation Estimation Product (FY4A-QPE)

The precipitation data are sourced from the FY-4A QPE. The FY-4A satellite has the
Advanced Geosynchronous Radiation Imager (AGRI). The AGRI sensor provides Level 1
to Level 4 meteorological products, with Level 2 products offering the most comprehensive
data. The FY4A-QPE is a Level 2 operational precipitation product for the China region,
derived from the FY-4A satellite’s AGRI. FY4A-QPE monitors precipitation intensity, range,
and trend in China, supporting weather analysis, forecasting, flood monitoring, and warn-
ing services. It has a temporal resolution of 4.5 min and a spatial resolution of 4 km [39].
The data can be accessed at http://satellite.nsmc.org.cn/PortalSite/Data/Satellite.aspx (ac-
cessed on 1 March 2024). The data files contain quantitatively estimated pixel instantaneous
precipitation rates derived from AGRI’s precipitation retrieval algorithm by converting
instantaneous brightness temperature data observed in the infrared channel into hourly
precipitation amounts. The selected data period is for the summer months of June, July,
and August from 2019 to 2023.

2.2. ERA5 Data

The fifth iteration of ECMWF’s atmospheric reanalysis for the global climate, ERA5,
encompasses a comprehensive timeline stretching from January 1940 to the present. This
cutting-edge dataset is the product of the esteemed Copernicus Climate Change Service
(C3S) housed within ECMWF. ERA5 offers a granular view of the Earth’s climate, furnishing
hourly estimates for many atmospheric, terrestrial, and oceanic variables. Utilizing a 31 km
grid, the data comprehensively cover the globe, enabling detailed insights into regional and
global climate patterns. The atmosphere is meticulously resolved with 137 vertical levels,
spanning from the surface to an altitude of 80 km, revealing intricate vertical structures
and dynamics. Moreover, ERA5 recognizes the importance of uncertainty quantification,
integrating information on uncertainties for all variables, albeit at a compressed spatial and
temporal scale. Cloud LWC, IWC, CBH, CAPE, u, and v are sourced from ERA5. ERA5
combines vast historical observations into global estimates using advanced modeling and
data assimilation systems. ERA5 has been widely used in various studies. Using sounding
observations, the boundary layer height from ERA5 is evaluated [40].

2.3. Research Area

For this study, two specific periods were selected: (1) the mei-yu period, from June
1 to June 25, and (2) the midsummer period, from July 1 to August 10. The study area
encompasses the eastern TP and its downstream region (32◦–40◦N, 90◦–108◦E), further
divided into two subregions based on elevation: 32◦–36◦E (Section A) and 36◦–40◦E (Section
B) (see Figure 1). Data from ERA5 and observational sources were categorized into the
mei-yu and midsummer seasons to analyze the diurnal cycle of precipitation.

Figure 1 shows that the southern part of the study area has higher terrain, with
elevation gradually decreasing from west to east. The elevation generally decreases from
west to east in the northern part (Section A). We specifically focus on Lanzhou, a pivotal city
within the LP, and Xining, which epitomizes the HV. Notable valleys are present between
95◦E and 100◦E, corresponding to the area around Xining and Qinghai Lake, and between
103◦E and 106◦E, corresponding to Lanzhou and its surroundings. Mountain ranges lie
between these valleys.
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Figure 1. Topographic features of the eastern Tibetan Plateau, highlighting Section A as the northern

region and Section B as the southern region. The stars indicate the locations of Yushu, Xining,

Haidong, and Lanzhou city from west to east. Annotations include the Loess Plateau, Huangshui

Valley, and northeastern Tibetan Plateau (TP).

3. Methods

Hovmöller diagrams [24] were used to show the diurnal cycle of CBH, precipitation,
dewpoint spread, IWC, and LWC, as well as their variations with latitude. The analysis
employs a local time (LT) framework, defined as Co-ordinated Universal Time (UTC)
plus 7 h, aligning with the regional time zone under investigation. The construction of
Hovmöller diagrams follows a standardized approach, where longitude is systematically
plotted along the horizontal (x-) axis, while time, typically in hourly increments, is recorded
on the vertical (ordinate) axis. This configuration facilitates the visualization of how a
selected physical field evolves spatially across longitude and temporally throughout the
day. The contour values of each variable are represented using a color scheme or shading,
ensuring that the spatial and temporal patterns are readily apparent. Additionally, the
height of the LCL is derived using the relationship Zlcl = 123(T − Td), where T is the air
temperature at 2 m and Td is the dewpoint temperature, with the LCL determined by the
dewpoint spread [41,42].

4. Results

4.1. Patterns of Precipitation and Cloud

We first analyzed the diurnal variation in precipitation from the FY4A-QPE dataset
during the mei-yu period. In Section A (i.e., the northern part), spanning 95◦E to 102◦E
(around Xining and Haidong), precipitation shows pronounced diurnal variation, with a
dispersion pattern extending from afternoon to night from west to east. However, it lacks
a distinct nocturnal rainfall signature. In contrast, the region between 103◦E and 106◦E
(around Lanzhou) and further eastward (i.e., a general location toward the east between
106◦E and 110◦E) displays smaller diurnal variations and reduced total precipitation, with
significant regional variability (Figure 2a). During midsummer, Section A exhibits marked
diurnal variation, mainly concentrated between 1500 and 2100 LT in the 98◦E to 103◦E
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range (Figure 2b), without west-to-east dispersion seen earlier. In contrast, the region from
105◦E to 110◦E shows significant dispersion from 1200 to 2400 LT.

Figure 2. Diurnal variation in precipitation during the mei-yu ((a) for Section A, (c) for Section B)

and midsummer periods ((b) for Section A, (d) for Section B), based on quantitative precipitation

estimates from the Fengyun 4A Satellite (FY4A QPE).

In Section B (the southern part), precipitation generally shows substantial diurnal
variation, characterized predominantly by nocturnal rainfall commencing after 1800 LT.
This pattern shows minimal dispersion between 90◦E and 103◦E, but a notable dispersion
is observed in the area eastward (i.e., a general location toward the east between 103◦E
and 110◦E), with overall smaller regional differences (Figure 2c). During midsummer, the
diurnal variation remains pronounced in Section B, with negligible dispersion from 90◦E
to 103◦E, but significant dispersion is seen from 105◦E to 110◦E, spanning from 0000 to
1900 LT (Figure 2d).

When precipitation data from ERA5 (Figure S1) and FY4A-QPE are compared, the
results indicate that, regardless of the region (A or B) or the season (mei-yu or midsummer),
the precipitation patterns derived from ERA5 closely align with the spatial and tempo-
ral distribution observed in FY4A-QPE. While the two datasets have minor numerical
discrepancies, the overall congruence in their precipitation patterns is evident.

When FY4A-QPE data are compared to ground measurements (Figure S2), significant
discrepancies between Lanzhou and Xining emerge. Specifically, observational data for
Lanzhou indicate markedly lower precipitation totals, with an absence of notable nocturnal
rainfall. Conversely, Xining displays significant nocturnal precipitation, with FY4A-QPE
reporting an hourly averaged intensity peak at 2100 LT, which occurs three hours earlier
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than observed in ground measurements. Additionally, the precipitation estimates derived
from FY4A-QPE consistently surpass those recorded by observations.

We subsequently investigated the diurnal variation of cloud base height (CBH) over
the northeastern TP. This analysis diverges from the work of Cao et al. (2022) [31], which
focused on the southern TP and its relationship with the surface boundary layer, as well as
Zhao et al. (2023) [28], which explored cloud amount and vertical distribution across the
TP. In Section A, during the mei-yu period, the CBH remains relatively low, with minimal
diurnal variation spanning 95◦E to 102◦E (around Xining and Haidong) (Figure 3a). In
contrast, regions located between 103◦E and 106◦E (around Lanzhou) and the 91–93◦E
area exhibit higher CBH, with more pronounced diurnal fluctuations. The CBH patterns
observed during midsummer are consistent with those recorded during the mei-yu period
(Figure 3b). In Section B, the CBH generally shows smaller diurnal variation, with less
pronounced changes occurring in the western part and larger variations between 90◦E
and 104◦E (Figure 3c)—however, regions located between 103◦E and 106◦E display higher
CBH with significant diurnal variability. Like Section A, the CBH characteristics during
midsummer closely resemble those observed during the mei-yu period (Figure 3d).

 

Figure 3. Diurnal variations in cloud base height (CBH) during the mei-yu ((a) for Section A, (c) for

Section B) and midsummer periods ((b) for Section A, (d) for Section B) derived from ERA5 data.
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We further assessed the liquid water content within clouds, distinguishing between
daytime and nighttime across the mei-yu and midsummer periods and within Sections
A and B. This analysis diverges from the work of Cao et al. (2022) [31], which focused
on the southern TP and its relationship with the surface boundary layer, as well as Zhao
et al. (2023) [28]. During both mei-yu and midsummer periods in A section, the liquid
water content is notably high around 100◦E to 102◦E (near Xining), extending from near the
surface to higher altitudes, with a peak around 500 hPa (Figure 4a,b). This elevated content
is attributed to Xining’s location in a moisture-rich valley. In contrast, regions around
103◦E to 104◦E (near Lanzhou) exhibit significantly lower daytime liquid water content
(Figure 4a,b). At night, the liquid water content over Xining diminishes compared to
daytime levels. However, it remains higher than over Lanzhou (Figure 4c,d), highlighting
the contrasting moisture conditions where Xining has abundant moisture and dry, hot
winds influence Lanzhou. Furthermore, regardless of whether it is daytime or nighttime,
the cloud liquid content within the boundary layer of the area to the east of Lanzhou is
significantly lower than that in the Hehuang Valley.

Section B, characterized by a different terrain with no valley between 95◦E and 100◦E
(Figure 4e,g), exhibits a distinct cloud liquid water content distribution. During the daytime
in both mei-yu and midsummer periods, a liquid water center emerges near 95◦E. As one
moves eastward, the cloud water content progressively decreases. Along steep slopes
between 103◦E and 105◦E, the liquid water content near the surface is larger than in the
A section. There is another liquid water center near 108◦E (around Qinling Mountain).
Overall, nighttime liquid water content is consistently lower than during the day.

The investigation of ice water content, segregated by daytime and nighttime con-
ditions, reveals distinct patterns across Section A during the mei-yu and midsummer
periods. During the day, ice water content exhibits peaks at 90◦E to 92◦E, 97◦E to 99◦E,
and 102◦E to 110◦E, with concentrations centered around 300 hPa (Figure 5a,b). At night,
ice water content increases notably between 98◦E and 103◦E, encompassing both Xining
and Lanzhou. This increase is attributed to lower nocturnal temperatures enhancing ice
formation (Figure 5c,d). In Section B, a pronounced center of ice water content is observed
during the daytime between 92◦E and 103◦E during both the mei-yu and midsummer
periods, centered around 300 hPa. Overall, the ice water content is consistently greater at
night compared to the daytime, reflecting the influence of diurnal temperature variations
on ice processes.
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The analysis of precipitation types during the mei-yu season reveals distinct regional
contributions from liquid and solid precipitation. In Section A, liquid precipitation is
the dominant form between 96◦E and 102◦E, whereas solid precipitation has a more
significant presence around 95◦E and 101◦E (Figure 6a). Liquid precipitation generally
prevails across 90◦E to 103◦E but diminishes notably between 103◦E and 104◦E. Conversely,
solid precipitation shows minimal contribution from 90◦E to 104◦E, with a gradual increase
observed from 104◦E to 110◦E. During midsummer, liquid precipitation is most pronounced
at 96◦E, 102◦E, and 106◦E in the A region, whereas solid precipitation contributions are
higher between 93◦E and 95◦E, at 97◦E, and near 102◦E and 104◦E (Figure 6b). In Section
B, liquid precipitation is particularly prominent at 92◦E, 94◦E to 96◦E, and 102◦E to 104◦E.
Solid precipitation is significant between 90◦E and 100◦E, but its presence diminishes at
102◦E to 104◦E before becoming prominent again from 104◦E to 110◦E (Figure 6c,d). The
topographic map indicates that both regions A and B exhibit a steep elevation gradient
between 102◦E and 105◦E, with altitudes decreasing from approximately 3000 m to nearly
several hundred meters. This abrupt drop in elevation likely contributes to the observed
consistency of the curve at 105◦ longitude, as the significant change in altitude affects
various correlations. However, the uncertainties associated with these findings necessitate
further investigation using additional data and methodologies.

Figure 6. Correlation of CAPE, cloud LWC, and IWC with precipitation rate during the mei-yu ((a)

for Section A, (c) for Section B) and midsummer periods ((b) for Section A, (d) for Section B), derived

from ERA5.

Examining water vapor transport patterns unveils significant large-scale disparities be-
tween northeastern TP and eastern areas. Water vapor in this region is mainly transported
from the west or southwest (Figure 7). Furthermore, distinctions are observed within the
northeastern TP, particularly between Xining and Lanzhou. The diurnal precipitation varia-
tion over the eastward area is more subtle than that of eastern TP. Furthermore, the intensity
of water vapor transport over Xining peaks significantly at 1400 LT during the daytime,
contrasting sharply with the weaker transport observed over Lanzhou (Figure 7a,c). At
night, the water vapor transport intensity is comparable between Xining and Lanzhou
city, remaining consistently low (Figure 7b,d). These findings suggest that precipitation
is predominantly concentrated during the daytime in Xining, where water vapor in the
atmosphere is effectively intercepted. Conversely, Lanzhou, positioned downstream at
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the base of a slope, experiences considerably less precipitation. To elucidate this pattern’s
mechanisms, subsequent analyses will explore thermodynamic and dynamic factors.

 

Figure 7. Integral of water vapor flux in Section A and B at 1400 LT (a) and 0200 LT (b) during the

mei-yu period and at 1400 LT (c) and 0200 LT (d) during midsummer periods from the ERA5 dataset.

4.2. Thermal Factor Analysis

During the mei-yu season, CAPE exhibits pronounced diurnal variability in Section A,
particularly between 95◦E and 102◦E (around Xining and Haidong), with peaks occurring
from 1400 to 1900 LT and reaching maximum values around 250 J·kg−1, despite relatively
low absolute CAPE values (Figure 8a). In contrast, CAPE in the 103–106◦E range (around
Lanzhou) displays minimal diurnal variation, maintaining values near 200 J·kg−1. In Sec-
tion B, CAPE shows more substantial diurnal fluctuations, with significantly higher values
between 1400 and 1900 LT in the 95–102◦E range, peaking at approximately 700 J·kg−1,
while values between 103◦E and 106◦E remain lower, around 250 J·kg−1 (Figure 8c). During
midsummer, CAPE in the A region (90–102◦E) around Xining and Haidong exhibits peaks
between 1200 and 1900 LT, ranging from about 50 to 250 J·kg−1 (Figure 8b). Similar patterns
are observed in Section B between 90◦E and 105◦E, where CAPE also reaches its maximum
between 1200 and 1900 LT, with values around 250 J·kg−1 (Figure 8d). Notably, the over-
all CAPE values between 103◦ and 110◦ E during midsummer do not show significant
differences.
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Correlation analysis reveals a strong association between CAPE and precipitation in
the A region, particularly between 96◦E and 102◦E (around Xining and Haidong), with
correlation coefficients exceeding 0.6 (Figure 6a). In contrast, this relationship between
103◦E and 106◦E (around Lanzhou) is insignificant. In Section B, only the 100–102◦E range
shows a relatively strong correlation, while other areas exhibit weaker associations than the
A region. These findings suggest that elevated CAPE levels are generally associated with
increased precipitation near Xining, driven by favorable thermal conditions that enhance
valley and lake–land breezes. Conversely, the link between CAPE and precipitation around
Lanzhou and the eastward area is less clear; due to limited moisture availability, even high
CAPE values around Lanzhou seldom result in cloud formation and precipitation.

Figure 8. Diurnal variation in convective available potential energy (CAPE) during the mei-yu ((a)

for Section A, (c) for Section B) and midsummer periods ((b) for Section A, (d) for Section B) from

ERA5.

During the mei-yu season, notable diurnal variation in the temperature–dew point
difference is observed in the A region, with pronounced centers located between 91◦E
and 95◦E and between 103◦E and 105◦E. The temperature–dew point difference peaks at
1800 LT, up to 20 ◦C, and reaches a minimum of approximately 2 ◦C at 0600 LT (Figure 9a).
In contrast, the smallest diurnal variation is found between 96◦E and 102◦E (around Xining
and Haidong) and between 107◦E and 110◦E, where the difference peaks at just 8 ◦C at
1800 LT and drops to 1 ◦C at 0600 LT. In the B region, spanning from 90◦E to 106◦E, there is
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significant diurnal variation from west to east, with the temperature–dew point difference
also peaking at 1800 LT and reaching its minimum at 0600 LT (Figure 9c).

During midsummer, similar patterns emerge in the A region, with significant diurnal
variation between 90◦E and 96◦E and between 103◦E and 106◦E. The temperature–dew
point difference peaks at 1800 LT, with a maximum of 20 ◦C, and reaches a minimum
at 0600 LT. Conversely, the diurnal variation remains minimal between 96◦E and 102◦E
(around Xining and Haidong) and from 107◦E to 110◦E, with the difference peaking at
1800 LT and minimizing at 0600 LT (Figure 9b,d). Overall, the temperature–dew point
difference in the A region is consistently larger compared to the B region. This difference
aligns with the distribution characteristics of CBH, indicating a close relationship between
the temperature–dew point difference and CBH.

Figure 9. Diurnal variation in dewpoint spread during the mei-yu ((a) for Section A, (c) for Section B)

and midsummer periods ((b) for Section A, (d) for Section B).

4.3. Dynamic Factors Analysis

During the mei-yu season, westerly winds dominate the wind field at 200 hPa across
both the A and B regions, with speeds reaching up to 40 m·s−1 (Figure S3). Moreover,
the A region continues to experience dominant westerlies, though wind speeds decrease
in the B region by midsummer. During the mei-yu season in the A region, the wind
field is characterized by westerly and southwesterly winds at 500 hPa height, while the B
region shows pronounced diurnal variations due to inertial oscillations across most areas
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(Figure S4). The difference in wind fields between 500 and 200 hPa reveals that the wind
shear between these levels is relatively minor in the A region, exerting limited influence on
cloud formation and precipitation. Conversely, the B region experiences more substantial
wind shear between 500 hPa and 200 hPa, which has a more pronounced impact on clouds
and precipitation. The TP exhibits notable and rapid downward momentum transfer.
Significant diurnal variations in low-level wind speed over the central and western parts of
the TP are associated with an increased likelihood of precipitation the following night. The
northeastern TP is influenced by both inertial oscillations and local lake–land breezes and
valley wind circulations, leading to longitudinal dispersion in precipitation patterns.

Calculations based on the index from Cao et al. (2022) show that, during the mei-yu
season [29], the A region exhibits a gradual decrease in values from west to east, peaking
between 90◦E and 92◦E at 1900 LT to 0500 LT, with a maximum of 28 m·s−1, and reaching
a minimum of 22 m·s−1 at 1200 LT (Figure 10). The lowest values are observed between
100◦E and 106◦E, with maximum and minimum values around 21 m·s−1. In the B region,
values are higher between 95◦E and 100◦E from 2000 LT to 0600 LT, reaching up to 22 m·s−1,
while the lowest values are around 16 m·s−1 between 90◦E and 92◦E.

Figure 10. Diurnal variation in ∆V during the mei-yu ((a) for Section A, (c) for Section B) and

midsummer periods ((b) for Section A, (d) for Section B).

During midsummer, a similar west-to-east decrease is observed in the A region, with
higher values between 90◦E and 100◦E reaching 26 m·s−1 from 2000 LT to 0400 LT and the
lowest values around 19 m·s−1 at 110◦E. In the B region, values also decrease from west to
east, peaking at 19 m·s−1 between 90◦E and 95◦E from 2000 LT to 0400 LT and dropping to
approximately 12 m·s−1 at 110◦E.
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Correlation analysis reveals that, during the mei-yu season, the relationship between
wind shear and precipitation is weak in the A region between 96◦E and 104◦E but stronger
around 95◦E and 105◦E (Figure 11). In midsummer, a better correlation is observed at
104◦E and 107◦E, though it remains poor in other areas. This indicates two facts: (1) the
precipitation difference between the northeastern TP and the eastward area is related to
the wind shear at 200 hPa and 500 hPa on a large scale. (2) Wind shear is not the primary
factor influencing precipitation differences between Xining and Lanzhou, as westerlies
predominantly prevail during the mei-yu season. Instead, the variability in moisture
conditions is the main factor affecting precipitation differences, with thermal and dynamic
conditions being relatively similar in both regions. Xining and the adjacent Qinghai Lake
are situated in a basin where diurnal variations in sensible heat flux are small over the
lake but pronounced around Xining. This results in significant diurnal fluctuations in the
lower-level vertical wind field, with valley and lake–land breezes enhancing convection.
Precipitation is closely linked to CAPE. Water vapor is effectively intercepted near Xining,
whereas, in Lanzhou, located at the base of a slope, descending air currents and high
pressure result in dry, warm winds and reduced precipitation.

Figure 11. Correlation of ∆V and water vapor and precipitation during the mei-yu ((a) for Section A,

(c) for Section B) and midsummer periods ((b) for Section A, (d) for Section B).

5. Conclusions

China’s precipitation regime is characterized by three primary rainy seasons in the
south and two distinct seasons over the Tibetan Plateau (TP), specifically the mei-yu
and midsummer periods. Despite increasing warmth and moisture in Northwest China,
the mechanisms governing land–atmosphere cloud–precipitation coupling remain inade-
quately understood, particularly regarding the disparities in precipitation benefits between
the Loess Plateau (LP) and the Huangshui Valley (HV). This study employs the Fengyun-4
Satellite Quantitative Precipitation Estimation Product (FY4A-QPE) and ERA5 datasets to
analyze cloud and precipitation characteristics, focusing on Lanzhou, a key city in the LP,
and Xining, representative of the HV. Notably, these two cities are situated less than 200 km
apart.

Our findings indicate that diurnal variations in precipitation are significantly less
pronounced in the eastern TP than in its northeastern counterpart, attributed to fluctuations
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in convective available potential energy (CAPE) and wind shear between 200 hPa and
500 hPa. Notably, while both cities share similar wind shear patterns and moisture transport
directions, Xining benefits from enhanced moisture availability due to snowmelt and
effective water retention in surrounding mountains, resulting in higher precipitation levels.
In contrast, despite high CAPE values, Lanzhou’s moisture deficits limit cloud formation,
leading to weaker precipitation dynamics.

As warming and moistening trends continue, enhanced precipitation is anticipated,
particularly in the HV, with potential ecological and human habitat improvements. How-
ever, concentrated rainfall during summer afternoons and midnights raises concerns about
extreme precipitation events, particularly given the region’s susceptibility to geological
hazards due to loess soils.

This study acknowledges limitations in latitude-averaged results and uncertainties
related to the FY4A-QPE and ERA5 datasets. Future research should adopt advanced
methodologies and higher-quality data to further elucidate the complex interactions driving
precipitation dynamics in these regions.
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